Справочное руководство по MySQL версии 4.1.1-alpha

         

Динамический SQL


Возможности операторов встроенного SQL, описанные ранее, относятся к статическому SQL. В статическом SQL вся информация об операторе SQL известна на момент компиляции. Однако очень часто в диалоговых программах требуется более гибкая форма выполнения операторов SQL. Фактически, сам текст оператора SQL формируется уже во время выполнения программы.

Сформированный таким образом текст SQL-оператора поступает в СУБД, которая должна его скомпилировать и выполнить «на лету», в процессе работы приложения. Если мы снова вернемся к этапам выполнения SQL-операторов, то первые четыре действия, связанные с синтаксическим анализом, семантическим анализом, построением и оптимизацией плана выполнения запроса, выполняются на этапе компиляции. В момент исполнения этого оператора СУБД просто изымает хранимый план выполнения этого оператора и исполняет его.

В случае динамического SQL ситуация абсолютно иная. На момент компиляции мы не видим и не знаем текст оператора SQL и не можем выполнить ни одного из четырех обозначенных этапов. Все этапы СУБД должна будет выполнять с ходу, без предварительной подготовки в момент исполнения программы.

На рис. 12.5 представлены условные временные диаграммы выполнения SQL-операторов в статическом SQL и в динамическом SQL. Конечно, динамический SQL гораздо менее эффективен в смысле производительности, по сравнению со статическим SQL. Поэтому во всех случаях, когда это возможно, необходимо избегать динамического SQL. Но бывают случаи, когда отказ от динам'ического SQL серьезно усложняет приложение. Например, в случае с поиском по произвольному множеству параметров невозможно заранее предусмотреть все возможные комбинации запросов, даже если возможных параметров два десятка. А если их больше, то именно динамический SQL становится наиболее удобным методом решения необъятной проблемы.

Наиболее простой формой динамического SQL является оператор непосредственного выполнения EXECUTE IMMEDIATE. Этот оператор имеет следующий синтаксис:



Базовая переменная содержит текст SQL


EXECUTE IMMEDIATE <имя_базовой переменной>

Базовая переменная содержит текст SQL оператора.

Однако оператор непосредственного выполнения пригоден для выполнения операции, которые не возвращают результаты. Так же как в статическом SQL, для работы с множеством записей вводится понятие курсора и добавляются онера-торы по работе с курсором, и в динамическом SQL должны быть определены подобные структуры.

Прежде всего было предложено разделить выполнение SQL-оператора в динамическом SQL на два отдельных этапа. Первый этап называется подготовительным, он фактически включает 4 первых этапа выполнения SQL-операторов, рассмотренные нами ранее: синтаксический и семантический анализ, построение и оптимизация плана выполнения оператора.

Этот этан выполняется оператором PREPARE, синтаксис которого приведен ниже:

PREPARE <имя_оператора> FROM <имя_базовой переменной>

<имя_оператора> - это идентификатор базового языка.

Далее на втором этапе этот определенный на первом этапе оператор может быть выполнен операцией EXECUTE, которая имеет синтаксис:

EXECUTE <имя__оператора> USING {<список базовых переменных> |

DESCRIPTOR <имя_дескриптора>}

Здесь DESCRIPTOR — это некоторая структура, которая описывается на клиенте, но создается и управляется сервером. Дескриптор представляет совокупность элементов данных, принадлежащих СУБД. Программное обеспечение СУБД должно содержать и поддерживать набор операций над дескрипторами. Эта структура была введена в стандарт SQL2 для типизации динамического SQL.

В стандарт SQ.L2 введены следующие операции над дескрипторами:



ALLOCATE DESCRIPTOR <имя_дескриптора> [WITH MAX <число_элементов>] — оператор связывает имя дескриптора с числом его базовых элементов и обеспечивает выделение памяти под данный дескриптор.

DEALLOCATE DESCRIPTOR <имя_дескриптора> — оператор освобождает разделяемую память СУБД, занятую хранением описания данного дескриптора. После выполнения данного оператора невозможно обратиться к дескриптору ни с одной операцией.

в дескриптор описания передаваемых параметров.



SET DESCRIPTOR {COUNT = <имя_базовой переменной> VALUE <номер элемента> {<имя_ элемента>= <имя_базовой перененной>[...]}} — оператор занесения в дескриптор описания передаваемых параметров. Описания перелаются СУБД, которая их обрабатывает, внося соответствующие изменения в область данных, отведенную под дескриптор.

GET DESCRIPTOR { <имя_базовой переменной> = COUNT | VALUE <номер элемента> {<имя_базовой переменной>=<имя_эленента>[...]} — оператор получения информации из дескрипторов после выполнения запроса.

DESCRIBE [ INPUT | OUTPUT] <имя_оператора> USING SQL DESCRIPTOR <имя_дескрипто-pa> — оператор, позволяющий получить описания таблиц результатов запросов (DESCRIBE OUTPUT) или входных параметров (DESCRIBE INPUT).

OPEN <имя_курсора> [USING <список базовых переменных> | USING SQL DESCRIPTOR <имя_дескриптора>] — динамический оператор открытия курсора.

FETCH <имя_курсора> [USING <список базовых переменных> | USING SQL DESCRIPTOR <имя_дескриптора>] — динамический оператор перемещения но курсору.

DEALLOCATE PREPARE <имя_оператора> — оператор уничтожает ранее подготовленный план выполнения оператора SQL и освобождает разделяемую память СУБД, связанную с храпением этого плана. Этот оператор имеет смысл применять, если вы не будете больше применять команду выполнения к подготовленному ранее оператору SQL.

Следует отметить, что в настоящий момент большинство СУБД реализуют динамический SQL несколько отличными от стандарта способами, однако в ближайшем будущем все поставщики вынуждены будут перейти к стандарту, так как именно это привлекает пользователей и делает переносимым разрабатываемое прикладное программное обеспечение.


Встроенный SQL


Язык SQL, как мы уже видели в главе 5, предназначен для организации доступа к базам данных. При этом предполагается, что доступ к БД может быть осуществлен в двух режимах: в интерактивном режиме и в режиме выполнения прикладных программ (приложений).

Эта двойственность SQL создает ряд преимуществ:

Все возможности интерактивного языка запросов доступны и в прикладном программировании.

Можно в интерактивном режиме отладить основные алгоритмы обработки информации, которые в дальнейшем могут быть готовыми вставлены в работающие приложения.

SQL действительно является языком по работе с базами данных, но в явном виде он не является языком программирования. В нем отсутствуют традиционные операторы, организующие циклы, позволяющие объявить и использовать внутренние переменные, организовать анализ некоторых условий и возможность изменения хода программы в зависимости от выполненного условия. В общем случае можно назвать SQL подъязыком, который служит исключительно для управления базами данных. Для создания приложений, настоящих программ необходимо использовать другие, базовые языки программирования, в которые операторы языка SQL будут встраиваться.

Базовыми языками программирования могут быть языки С, COBOL, PL/1, Pascal. Существуют два способа применения SQL в прикладных программах:

Встроенный SQL. При таком подходе операторы SQL встраиваются непосредственно в исходный текст программы на базовом языке. При компиляции программы со встроенными операторами SQL используется специальный препроцессор SQL, который преобразует исходный текст в исполняемую программу.

Интерфейс программирования приложений (API application program interface). При использовании данного метода прикладная программа взаимодействует с СУБД путем применения специальных функций. Вызывая эти функции, программа передает СУБД операторы SQL и получает обратно результаты запросов. В этом случае не требуется специализированный препроцессор.

Процесс выполнения операторов SQL может быть условно разделен на 5 этапов (см.

На первом этапе выполняется синтаксический


рис. 12.1).


Рис. 12.1. Процесс выполнения операторов SQL

На первом этапе выполняется синтаксический анализ оператора SQL. На этом этапе проверяется корректность записи SQL-оператора в соответствии с правилами синтаксиса.

На этом этапе проверяется корректность параметров оператора SQL: имен отношений, имен полей данных, привилегий пользователя по работе с указанными объектами. Здесь обнаруживаются семантические ошибки.

На этом этапе проводится оптимизация запроса. СУБД проводит разделение целостного запроса на ряд минимальных операций и оптимизирует последовательность их выполнения с точки зрения стоимости выполнения запроса. На этом этапе строится несколько планов выполнения запроса и выбирается из них один — оптимальный для данного состояния БД.

На четвертом этапе СУБД генерирует двоичную версию оптимального плана запроса, подготовленного на этапе 3. Двоичный план выполнения запроса в СУБД фактически является эквивалентом объектного кода программы.

И наконец, только на пятом этапе СУБД реализует (выполняет) разработанный план, тем самым выполняя оператор SQL.

Следует отметить, что перечисленные этапы отличаются по числу обращений к БД и по процессорному времени, требуемому для их выполнения. Синтаксический анализ проводится очень быстро, он не требует обращения к системным каталогам БД. Семантический анализ уже требует работы с базой мета-данных, то есть с системными каталогами БД, поэтому при выполнении этого этапа происходит обращение к системному каталогу и серьезная работа с ним. Этап, связанный с оптимизаций плана запроса, требует работы не только с системным каталогом, но и со статистической информацией о БД, которая характеризует текущее состояние всех отношений, используемых в запросе, их физическое расположение на страницах и сегментах внешней памяти. В силу указанных причин этап оптимизации наиболее трудоемкий и длительный в процессе выполнения запроса. Однако если не проводить этап оптимизации, то стоимость (время) выполнения неоптимизированного запроса может в несколько раз превысить стоимость оптимизированного запроса.Время, потраченное на оптимизацию запроса, с лихвой компенсирует затраты на выполнение неоптимизированного запроса.

Этапы выполнения операторов SQL одни и те же как в интерактивном режиме, так и внутри приложений. Однако при работе с готовым приложением многие этапы СУБД может выполнить заранее.



Хранимые процедуры


С точки зрения приложений, работающих с БД, хранимые процедуры (Stored Procedure) — это подпрограммы, которые выполняются на сервере. По отношению к БД — это объекты, которые создаются и хранятся в БД. Они могут быть вызваны из клиентских приложений. При этом одна процедура может быть использована в любом количестве клиентских приложений, что позволяет существенно сэкономить трудозатраты на создание прикладного программного обеспечения и эффективно применять стратегию повторного использования кода. Так же как и любые процедуры в стандартных языках программирования, хранимые процедуры могут иметь входные и выходные параметры или не иметь их вовсе.

Хранимые процедуры могут быть активизированы не только пользовательскими приложениями, но и триггерами.

Хранимые процедуры пишутся на специальном встроенном языке программирования, они могут включать любые операторы SQL, а также включают некоторый набор операторов, управляющих ходом выполнения программ, которые во многом схожи с подобными операторами процедурно ориентированных языков программирования. В коммерческих СУБД для написания текстов хранимых процедур используются собственные языки программирования, так, в СУБД Oracle для этого используется язык PL /SQL, а в MS SQL Server и Systemll фирмы Sybase используется язык Transact SQL. В последних версиях Oracle объявлено использование языка Java для написания хранимых процедур.

Хранимые процедуры являются объектами БД. Каждая хранимая процедура компилируется при первом выполнении, в процессе компиляции строится оптимальный план выполнения процедуры. Описание процедуры совместно с планом ее выполнения хранится в системных таблицах БД.

Для создания хранимой процедуры применяется оператор SQL CREATE PROCEDURE.

По умолчанию выполнить хранимую процедуру может только ее владелец, которым является владелец БД, и создатель хранимой процедуры. Однако владелец хранимой процедуры может делегировать права на ее запуск другим пользователям.

Имя хранимой процедуры является идентификатором в языке программирования, на котором она пишется, и должно удовлетворять всем требованиям, которые предъявляются к идентификаторам в данном языке.

В MS SQL Server хранимая



В MS SQL Server хранимая процедура создается оператором:

CREATE PROCEDURE] <имя_процедуры> [;<версия>]

[{@параметр1 тип_данных}

[VARYING] [= <значение_по_умолчанию>] [OUTPUT]]

[..параметрN..]

[ WITH

{ RECOMPILE

| ENCRYPTION

| RECOMPILE, ENCRYPTION}] [FOR REPLICATION]

AS

Тело процедуры

Здесь необязательное ключевое слово VARYING определяет заданное значение по умолчанию для определенного ранее параметра.

Ключевое слово RECOMPILE определяет режим компиляции создаваемой хранимой процедуры. Если задано ключевое слово RECOMPILE, то процедура будет перекомпилироваться каждый раз, когда она будет вызываться на исполнение. Это может резко замедлить исполнение процедуры. Но, с другой стороны, если данные, обрабатываемые данной хранимой процедурой, настолько динамичны, что предыдущий план исполнения, составленный при ее первом вызове, может быть абсолютно неэффективен при последующих вызовах, то стоит применять данный параметр при создании этой процедуры.

Ключевое слово ENCRYPTION определяет режим, при котором исходный текст хранимой процедуры не сохраняется в БД. Такой режим применяется для того, чтобы сохранить авторское право на интеллектуальную продукцию, которой и являются хранимые процедуры. Часто такой режим применяется, когда вы ставите готовую базу заказчику и не хотите, чтобы исходные тексты разработанных вами хранимых процедур были бы доступны администратору БД, работающему у заказчика. Однако надо помнить, что если вы захотите отредактировать текст хранимой процедуры сами, то вы его не сможете извлечь из БД тоже, его надо будет хранить отдельно в некотором текстовом файле. И это не самое плохое, но вот в случае восстановления БД после серьезной аварии для перекомпиляции потребуются первоначальные исходные тексты всех хранимых процедур. Поэтому защита вещь хорошая, но она усложняет сопровождение и модификацию хранимых процедур.

Однако кроме имени хранимой процедуры все остальные параметры являются необязательными. Процедуры могут быть процедурами или процедурами-функциями.

И эти понятия здесь трактуются


И эти понятия здесь трактуются традиционно, как в языках программирования высокого уровня. Хранимая процедура-функция возвращает значение, которое присваивается переменной, определяющей имя процедуры. Процедура в явном виде не возвращает значение, но в ней может быть использовано ключевое слово OUTPUT, которое определяет, что данный параметр является выходным.

Рассмотрим несколько примеров простейших хранимых процедур.

/* процедура проверки наличия экземпляров данной книги

параметры:

@ISBN шифр книги

процедура возвращает параметр, равный количеству экземпляров

Если возвращается ноль, то это значит, что нет свободных экземпляров данной

книги в библиотеке.

*/

CREATE PROCEDURE COUNT_EX (@ISBN varchar(12)) AS

/* определим внутреннюю переменную */

DECLARE @TEK_COUNT int

/* выполним соответствующий оператор

SELECT

Будем считать только экземпляры, которые в настоящий момент находятся

не на руках у читателей, а в библиотеке */

select @TEK_COUNT = select count(*)

FROM EXEMPLAR WHERE ISBN = @ISBN

AND READERJD Is NULL AND EXIST = True

/* 0 - ноль означает, что нет ни одного свободного экземпляра данной книги в библиотеке */

RETURN @TEK_COUNT

Хранимая процедура может быть вызвана несколькими способами. Простейший способ — это использование оператора:

ЕХЕС <имя мроцедуры> <значение входного_параметра1>...

<имя_переменной_для_выходного параметра!>...

При этом все входные и выходные параметры должны быть заданы обязательно и в том порядке, в котором они определены в процедуре.

Например, если мне надо найти число экземпляров книги «Oracle8. Энциклопедия пользователя», которая имеет ISBN 966-7393-08-09, то текст вызова ранее созданной хранимой процедуры может быть следующим:

/* Определили две переменные

@Ntek - количество экземпляров данной книги в наличие в библиотеке

@ISBN - международный шифр книги */

declare @Ntek int

DECLARE @ISBN VARCHAR(14)

/* Присвоим значение переменной @ISBN */

Select @ISBN = '966-7393-08-09'

у вас определено несколько версий



/* Присвоим переменной @Ntek результаты выполнения хранимой процедуры

COUNT_EX */

ЕХЕС @Ntek = COUNT_EX @ISBN

Если у вас определено несколько версий хранимой процедуры, то при вызове вы можете указать номер конкретной версии для исполнения. Tак, например, в версии 2 процедуры COUNT_EX последний оператор исполнения этой процедуры имеет вид:

ЕХЕС @Ntek = COUNT_EX:2 @ISBN

Однако если в процедуре определены значения входных параметров по умолчанию, то при запуске процедуры могут быть указаны значения не всех параметров. В этом случае оператор вызова процедуры может быть записан в следующем виде:

ЕХЕС <имя процедуры> <имя_параметра1>=<значение параметра1>...

<имя_napaмeтpaN>=<значение параметрамN>..

Например, создадим процедуру, которая считает количество книг, изданных конкретным издательством в конкретном году. При создании процедуры зададим для года издания по умолчанию значение текущего года.

CREATE PROCEDURE COUNT_BOOKS (@YEARIZD Int = Year(GetDate()),

@PUBLICH varchar(20))

/* процедура подсчета количества книг конкретного издательства, изданных в конкретом году

параметры:

@YEARIZD Int год издания

(PPUBLICH название издательства */ AS

DECLARE @TEK_Count int Select

@TEK count = Select COUNT(ISBN)

From BOOKS

Where YFARIZD = @YEARIZD AND PUBLICH =@PUBLICH

/* одновременно с исполнением оператора Select мы присваиваем результаты его работы определенной ранее переменной @TEK_Count */

/* при формировании результата работы нашей процедуры мы должны учесть, что в нашей библиотеке, возможно, нет ни одной книги некоторого издательства для заданного года. Результат выполнения запроса SELECT в этом случае будет иметь неопределенное значение, но анализировать все-таки лучше числовые значения. Поэтому в качестве возвращаемого значения мы используем результаты работы специальной встроенной функции Transact SQL COALESCE (nl.n2.....nm), которая возвращает первое конкретное, то есть не равное NULL, значение из списка значений nl.n2....,nm. */

Теперь вызовем эту процедуру, для



Return COALESCE (@TEK_Count,0)

Теперь вызовем эту процедуру, для этого подготовим переменную, куда можно поместить результаты выполнения процедуры.

declare @N int

Exec @N = COUNTJOOKS @PUBLICH = 'Питер'

В переменной @N мы получим количество книг в нашей библиотеке, изданных издательством «Питер» в текущем году. Мы можем обратиться к этой процедуре и задав все параметры:

Exec @N = COUNTJOOKS @PUBLICH = 'BHW. @YEARIZD = 1999

Тогда получим количество книг, изданных издательством «BHW» в 1999 году и присутствующих в нашей библиотеке.

Если мы задаем параметры по именам, то нам необязательно задавать их в том порядке, в котором они описаны при создании процедуры.

Каждая хранимая процедура является объектом БД. Она имеет уникальное имя и уникальный внутренний номер в системном каталоге. При изменении текста хранимой процедуры мы должны сначала уничтожить данную процедуру как объект, хранимый в БД, и только после этого записать на ее место новую. Следует отметить, что при удалении хранимой процедуры удаляются одновременно все ее версии, нельзя удалить только одну версию хранимой процедуры.

Для того чтобы автоматизировать процесс уничтожения старой процедуры и замены ее на новую, в начале текста хранимой процедуры можно выполнить проверку наличия объекта типа «хранимая процедура» с данным именем в системном каталоге и при наличии описания данного объекта удалить его из системного каталога. В этом случае текст хранимой процедуры предваряется специальным оператором проверки и может иметь, например, следующий вид:

/* проверка существования в системном каталоге объекта с данным именем и типом, созданного владельцем БД */

If exists (select * from sysobjects where id = object_id('dbo.NEW_BOOKS') and sysstat & Oxf = 4)

/* если объект существует, то сначала его удалим из системного каталога */

drop procedure dbo.NEW_BOOKS

GO

CREATE PROCEDURE NEW_BOOKS (@ISBN varchar(12).@TITL varchar(255),@AUTOR

varcharOO),@COAUTOR varchar(30) @YEARIZD int,@PAGES INT.@NUM_EXEMPL INT)

с указанием количества экземпляров данной



/* процедура ввода новой книги с указанием количества экземпляров данной книги параметры

@ISBN varchar(12) шифр книги

@TITL varchar(255) название

@AUTOR varchar(30) автор

@COAUTOR varchar(30) соавтор

@YEARIZD Int год издания

@PAGES INT количество страниц

@NUM_EXEMPL INT количество экземпляров

*/

AS

/*опишем переменную, в которой будет храниться количество оставшихся не оприходованных экземпляров книги, т.е. таких, которым еще не заданы инвентарные номера */

DECLARE @TEK Int

/ *вводим данные о книге в таблицу BOOKS */

INSERT INTO BOOKS VALUES(@ISBN@TITL @AUTOR@COAUTOR.@YEARIZD.@PAGES)

/* назначение значения текущего счетчика осташихся к вводу экземпляров*/

SELECT @ТЕК = @NUM_EXEMPL

/* организуем цикл для ввода новых экземпляров данной книги */

WHILE @TEK>0 /* пока количество оставшихся экземпляров больше нуля */

BEGIN

/* так как для инвентарного номера экземпляра книги мы задали свойство IDENTITY, то нам не надо вводить инвентарный номер. СУБД сама автоматически вычислит его, добавив единицу к предыдущему, введет при выполнении оператора ввода INSERT.

Поле, определяющее присутствие экземпляра в библиотеке (EXIST) - логическое поле, мы введем туда значение TRUE.которое соответствует присутствию экземпляра книги в библиотеке.

Даты взятия и возврата мы можем не заполнять, тогда по умолчанию СУБД подставит туда значение, соответствующее 1 января 1900 года, если мы не хотим хранить такие бессмысленные данные, то можем ввести для обоих полей дата время, значения текущей даты. */

SELECT @INV = SELECT MAX( ID_EXEMPLAR) FROM EXEMPLAR

/* организуем цикл для ввода новых экземпляров данной книги */

WHILE @ТЕК>0 /* пока количество оставшихся экземпляров больше нуля */

BEGIN

insert into EXEMPLAR (ID_EXEMPLAR, ISBN.DATA_IN.DATA_OUT,EXIST)

VALUES (@INV,@ISBN.GETDATE(),GetDate(). TRUE)

/* изменение текущих значений счетчика и инвентарного номера */

SELECT @ТЕК = @ТЕК - 1

SELECT @INV = @INV + 1

End /* конец цикла ввода данных о экземпляре книги*/ GO

Хранимые процедуры могут вызывать одна



Хранимые процедуры могут вызывать одна другую. Создадим хранимую процедуру, которая возвращает номер читательского билета для конкретного читателя.

if exists (select * from sysobjects

where id = object_id('dbo. CK_READER') and sysstat & Oxf = 4)

/* если объект существует, то сначала его удалим из системного каталога */ drop procedure dbo.CK_READER

/* Процедура возвращает номер читательского билета, если читатель есть и 0 в противном случае. В качестве параметров передаем фамилию и дату рождения */

CREATE PROCEDURE CK_READER (@FIRST_NAME varchar(30) .(PBIRTH_DAY varchar(12))

AS

/*опишем переменную, в которой будет храниться номер читательского билета*/

DECLARE (PNUM_READER INT

/* определение наличия читателя */

select @NUM_READER = select NUM_READER from READERS

WHERE FIRST_NAME = @ FIRST_NAME AND

AND convert(varchar(8).BIRTH _DAY,4)=@BIRTH_DAY RETURN COALESCE(@NUM_READER,0)

Мы здесь использовали функцию преобразования типа данных dataTime в тип данных varchar(8). Это было необходимо сделать для согласования типов данных при выполнении операции сравнения. Действительно, входная переменная @BIRTH_DAY имеет символьный тип (varchar), а поле базы данных BIRTH_DAY имеет тип SmallDateTime.

Хранимые процедуры допускают наличие нескольких выходных параметров. Для этого каждый выходной параметр должен после задания своего типа данных иметь дополнительное ключевое слово OUTPUT. Рассмотрим пример хранимой процедуры с несколькими выходными параметрами.

Создадим процедуру ввода нового читателя, при этом внутри процедуры выполним проверку наличия в нашей картотеке данного читателя, чтобы не назначать ему новый номер читательского билета. При этом выходными параметрами процедуры будут номер читательского билета, признак того, был ли ранее записан читатель с данными характеристиками в нашей библиотеке, а если он был записан, то сколько книг за ним числится.

/* проверка наличия данной процедуры в нашей БД*/

if exists (select * from sysobjects where id = object_id(N'[dbo].[NEW_READER]') and OBJECTPROPERTY(id.

Процедура возвращает новый номер читательского


N'IsProcedure') = 1)

drop procedure [dbo].[NEW_READER] GO

/* процедура проверки существования читателя с заданными значенияии вводимых параметров

Процедура возвращает новый номер читательского билета, если такого читателя не было сообщает старый номер и количество книг, которое должен читатель в противном случае */

CREATE PROCEDURE NEW_READER (@NAME_READER varchar(30) .(PADRES varchar(40).@HOOM_PHONE char(9).@WORK_PHONE char(9).

@BIRTH_DAY varchar(8). @NUM_READER int OUTPUT.

/* выходной параметр, определяющий номер читательского билета*/

@Y_N int OUTPUT,

/* выходной параметр, определяющий был ли читатель ранее записан в библиотеку*/

@COUNT_BOOKS int OUTPUT

/* выходной параметр, определяющий количество книг, которое числится за читателем*/)

AS

/* переменная, в которой будет храниться номер читательского билета, если читатель уже был записан в библиотеку */

DECLARE @N_R int

/* определение наличия читателя */

ЕХЕС @N_R = CK_READER'@NAME_READER.@BIRTH_DAY

IF @N_R= 0 Or @N_R Is Null

/* если читатель с заданными характеристиками не найден, т. е. переменной @N_R присвоено значение нуль или ее значение неопределено, перейдем к назначению для нового читателя нового номера читательского билета */

BEGIN

/* так как мы номер читательского билета определили как инкрементное поле, то в операторе ввода мы его не указываем система сама назначит новому читателю очередной номер */

INSERT INTO READER(NAME_READER,ADRES,HOOM_PHONE,WORK_PHONE,ВIRTH_DAY)

VALUES (@NAME_READER,(PADRES, @HOOM_PHONE.@WORK_PHONE,Convert(sma11dateti me, @BIRJH_DAY,4) )

/* в операторе INSERT мы должны преобразовать символьную переменную @BIRTH_DAY в тип данных smalldatetime, который определен для поля дата рождения BIRTH_DAY. Это преобразование мы сделаем с помощью встроенной функции Transact SQL Convert */

/* теперь определим назначенный номер читальского билета */

select @NUM_READER = NUM_READER FROM READER

WHERE NAME_READER = @NAME_READER AND

convert(varchar(8),BIRTH_DAY,4)=@BIRTH_DAY

здесь мы снова используем функцию



/* здесь мы снова используем функцию преобразования типа, но в этом случае нам необходимо преобразовать поле BIRTH_DAY из типа smalldatetime к типу varchar(S), в котором задан входной параметр @BIRTH_DAY */

Select @Y_N =0

/* присваиваем выходному параметру @Y_N значение 0 (ноль), что соответствует тому,что данный читатель ранее в нашей библиотеке не был записан */

Select @COUNT__BOOKS = 0

/* присваиваем выходному параметру, хранящему количество книг, числящихся за читателем значение ноль */

Return 1 END

else

/* если значение переменной @N_R не равно нулю, то читатель с заданными характеристиками был ранее записан в нашей библиотеке */

BEGIN

/* определение количества книг у читателя с найденным номером читательского билета */

select @COUNT_BOOKS = COUNT(INV_NUMBER) FROM EXEMPLAR

WHERE NUM_READER = @N_R

select @Count_books = COALESCE! @COUNT_BOOKS.0)

/* присваиваем выходному параметру @COUNT_BOOKS значение, равное количеству книг, которые числятся за нашим читателем, если в предыдущем запросе @COUNT_BOOKS было присвоено неопределенное значение, то мы заменим его на ноль, используя для этого встроенную функцию COALESCE(@COUNT_BOOKS,0). которая возвращает первое определенное значение из списка значений, заданных в качестве ее параметров */

Select @Y_N = 1

/* присваиваем выходному параметру @Y_N значение 1, что соответствует тому, что данный читатель ранее в нашей библиотеке был записан */

Select @NUM_READER = @N_R

/* присваиваем выходному параметру @NUM_READER определенный ранее номер читательского билета */

return 0

end

Теперь посмотрим, как работает наша новая процедура, для этого в режиме интерактивного выполнения запросов (то есть в Query Analyzer MS SQL Server 7.0) запишем следующую последовательность команд:

-- пример использования выходных параметров при вызове процедуры

-- new reader

-- зададим необходимые нам переменные

Declare @K int. @N int. @B int

exec NEW_READER 'Пушкин В.В.'.'Литовский 22-90'.

'333-55-99'. '444-66-88'. '01.06.83' ,NUM_READER =@K OUTPUT.


теперь выведем результаты работы нашей


@Y_N = @N OUTPUT.@COUNT_BOOKS = @B OUTPUT

-- теперь выведем результаты работы нашей процедуры используя ранее

-- определенные нами переменные

Select 'номер билета',@К.'да-нет',@N.'кол-во книг'.@В

Мы получим результат:



Если же мы снова запустим нашу процедуру с теми же параметрами, то есть повторим выполнение подготовленных выше операторов, то получим уже иной ответ:

Номер билета 18

да-нет 1

кол-во книг 0

и это означает, что господин Пушкин В. В. уже записан в нашей библиотеке, но он не успел взять ни одной книги, поэтому за ним числится 0 (ноль) книг.

Теперь обратимся к оценке эффективности применения хранимых процедур.

Если рассмотреть этапы выполнения одинакового текста части приложения, содержащего SQL-операторы, самостоятельно на клиенте и в качестве хранимой процедуры, то можно отметить, что на клиенте выполняются все 5 этапов выполнения SQL-операторов, а хранимая процедура может храниться в БД в уже скомпилированном виде, и ее исполнение займет гораздо меньше времени (см. рис. 12.2).

Кроме того, хранимые процедуры, как уже упоминалось, могут быть использованы несколькими приложениями, а встроенные операторы SQL должны быть включены в каждое приложение повторно.



Рис. 12.2. Процесс выполнения операторов SQL на клиенте и процесс выполнения хранимой процедуры

Хранимые процедуры также играют ключевую роль в повышении быстродействия при работе в сети с архитектурой «клиент—сервер».

На рис. 12.3 показан пример выполнения последовательности операторов SQL на клиенте, а на рис. 12.4 показан пример выполнения той же последовательности операторов SQL, оформленных в виде хранимой процедуры. В этом случае клиент обращается к серверу только для выполнения команды запуска хранимой процедуры. Сама хранимая процедура выполняется на сервере. Объем пересылаемой по сети информации резко сокращается во втором случае.



Рис. 12.3. Сетевой трафик при выполнении встроенных SQL-операторов



Рис. 12.4. Сетевой трафик при выполнении хранимой процедуры на сервере




Оператор чтения очередной строки курсора


После открытия указатель текущей строки установлен перед первой строкой курсора. Стандартно оператор FETCH перемещает указатель текущей строки на следующую строку и присваивает базовым переменным значение столбцов, соответствующее текущей строке.

Простой оператор FETCH имеет следующий синтаксис:

FETCH <имя_курсора> INTO <список переменных базового языка >

Оператор извлечения очередной строки из курсора будет выглядеть следующим образом:

FETCH Debtor_reader_cursor into @FIRSTJAME,

@LAST_NAME. @ADRES. @HOME_PHON. @WORK PHON, @TITLE

Расширенный оператор FETCH имеет следующий синтаксис:

FETCH

[NEXT | PRIOR | FIRST | LAST

| ABSOLUTE (n | <имя_переменной>)

|RELATIVE{n|<имя _nepeмeнной>}] FROM

<имя_курсора> INTO <список базовых переменных>

Здесь параметр NEXT задает выбор следующей строки после текущей из базового набора строк, связанного с курсором. Параметр PRIOR задает перемещение на предыдущую строку по отношению к текущей. Параметр FIRST задает перемещение на первую строку набора, а параметр LAST задает перемещение на последнюю строку набора.

Кроме того, в расширенном операторе перемещения допустимо переместиться сразу на заданную строку, при этом допустима как абсолютная адресация, заданием параметра ABSOLUTE, так и относительная адресация, заданием параметра RELATIVE. При относительной адресации положительное число сдвигает указатель вниз от текущей записи, отрицательное число сдвигает вверх от текущей записи.

Однако для применения расширенного оператора FETCH в соответствии со стандартом SQL2 описание курсора обязательно должно содержать ключевое слово SCROLL. Иногда такие курсоры называют в литературе прокручиваемыми курсорами. В стандарт эти курсоры вошли сравнительно недавно, поэтому в коммерческих СУБД очень часто операторы по работе с подобными курсорами серьезно отличаются. Правда, реалии сегодняшнего дня заставляют поставщиков коммерческих СУБД более строго соблюдать последний стандарт SQL. В технической документации можно встретить две версии синтаксиса оператора FETCH: одну, которая соответствует стандарту, и другую, которая расширяет стандарт дополнительными возможностями, предоставляемыми только данной СУБД для работы с курсором.

Если вы предполагаете, что ваша БД может быть перенесена на другую платформу, а это надо всегда предусматривать, то лучше пользоваться стандартными возможностями. В этом случае ваше приложение будет более платформенно-независимым и легче будет его перенести на другую СУБД.



Оператор определения курсора


Стандарт определяет следующий синтаксис оператора определения курсора:

DECLARE <имя_курсора> CURSOR FOR <слецификация_курсора>

спецификация курсорам := <выражение_запроса SELECT>

Имя курсора — это допустимый идентификатор в базовом языке программирования.

В объявлении курсора могут быть использованы базовые переменные. Однако необходимо помнить, что на момент выполнения оператора OPEN значения всех базовых переменных, используемых в качестве входных переменных, связанных с условиями фильтрации значений в базовом запросе, должны быть уже заданы.

Определим курсор, который содержит список всех должников нашей библиотеки. Должниками назовем читателей, которые имеют на руках хотя бы одну книгу, срок сдачи которой уже прошел.

DECLARE Debtor_reader_cursor CURSOR FOR

SELECT READERS.FIRST_NAME,

READERS.LAST_NAME,

READERS.ADRES.

READERS.HOME_PHON.

READERS.WORK_PHON.

BOOKS.TITLE FROM READERS,BOOKS,EXEMPLAR

WHERE READERS.READER_ID = EXEMPLAR.READER_ID AND

BOOKS.ISBN = EXEMPLARE.ISBN AND

.EXEMPLAR.DATA_OUT > Getdate()

ORDER BY READERS. FIRST_NAME

При определении курсора мы снова использовали функцию Transact SQL Getdate(), которая возвращает значение текущей даты. Таким образом, определенный курсор будет создавать набор строк, содержащих перечень должников, с указанием названий книг, которые они не вернули вовремя в библиотеку.

В соответствии со стандартом SQL2 Transact SQL содержит расширенное определение курсора

DECLARE <имя_курсора> [INSENSITIVE] [SCROLL] CURSOR

FOR <оператор выбора SELECT>

[FOR {READ ONLY | UPDATE [OF <имя_столбца 1> [,...n]]}]

Параметр INSENSITIVE (нечувствительный) определяет режим создания набора строк, соответствующего определяемому курсору, при котором все изменения в исходных таблицах, произведенные после открытия курсора другими пользователями, не видны в нем. Такой набор данных нечувствителен ко всем изменениям, которые могут проводиться другими пользователями в исходных таблицах, этот тип курсора соответствует некоторому мгновенному слепку с БД.

и экономно может обрабатывать такой



СУБД более быстро и экономно может обрабатывать такой курсор, поэтому если для вас действительно важно рассмотреть и обработать состояние БД на некоторый конкретный момент времени, то имеет смысл создать «нечувствительный курсор».

Ключевое слово SCROLL определяет, что допустимы любые режимы перемещения по курсору (FIRST, LAST, PRIOR. NEXT, RELATIVE, ABSOLUTE) в операторе FETCH.

Если не указано ключевое слово SCROLL, то считается доступной только стандартное перемещение вперед: спецификация NEXT в операторе FETCH.

Если указана спецификация READ ONLY (только для чтения), то изменения и обновления исходных таблиц не будут выполняться с использованием данного курсора. Курсор с данной спецификацией может быть самым быстрым в обработке, однако если вы не укажите специально спецификацию READ ONLY, то СУБД будет считать, что вы допускаете операции модификации с базовыми таблицами, и в этом случае для обеспечения целостности БД СУБД будет гораздо медленнее обрабатывать ваши операции с. курсором.

При использовании параметра UPDATE [OF <имя столбца 1> [,...<имя столбца n>]] мы задаем перечень столбцов, в которых допустимы изменения в процессе нашей работы с курсором. Такое ограничение упростит и ускорит работу СУБД. Если этот параметр не указан, то предполагается, что допустимы изменения всех столбцов курсора.

Вернемся к нашему примеру. Если мы преследуем цель мгновенного слепка БД, дающего сведения о должниках, то применим все параметры, позволяющие ускорить работу с нашим курсором. Тогда оператор описания курсора будет выглядеть следующим образом:

DECLARE Debtor_reader_cursor INSENSITIVE CURSOR

FOR

SELECT READERS. FIRST_NAME. READERS. LAST_NAME. READERS.ADRES.

READERS.HOME_PHON. READERS.WORK_PHON, BOOKS.TITLE FROM

READERS,BOOKS.EXEMPLAR

WHERE READERS.READER_ID = EXEMPLAR.READER_ID AND

BOOKS.ISBN = EXEMPLARE.ISBN AND

EXEMPLAR.DATA_OUT > Getdate()

ORDER BY READERS. FIRST_NAME

FOR READ ONLY

При описании курсора нет ограничений на вид оператора SELECT, который используется для создания базового набора строк, связанного с курсором.В oneраторе SELECT могут использоваться группировки и встроенные подзапросы и вычисляемые поля.


Оператор открытия курсора


Оператор открытия курсора имеет следующий синтаксис:

OPEN <имя_курсора> [USING <список базовых перёменных>]

Именно оператор открытия курсора инициирует выполнение базового запроса, соответствующего описанию курсора, заданному в операторе DECLARE ... CURSOR. При выполнении оператора OPEN СУБД производит семантическую проверку курсора, то есть выполняет этапы со 2 по 5 в алгоритме выполнения запросов (рис. 12.1), поэтому именно здесь СУБД возвращает коды ошибок прикладной программе, сообщающие ей о результатах выполнения базового запроса. Ошибки могут возникнуть в результате неправильного задания имен нолей или имен исходных таблиц или при попытке извлечь данные из таблиц, к которым данный пользователь не имеет доступа.

По стандарту СУБД возвращает код завершения операции в специальной системной переменной SQLCODE. В прикладной программе пользователь может анализировать эту переменную, что необходимо делать после выполнения каждого оператора SQL. При неудачном выполнении операции открытия курсора СУБД возвращает отрицательное значение SQLCODE.

В случае удачного завершения выполнения оператора открытия курсора набор данных, сформированный в результате базового запроса, остается доступным пользователю до момента выполнения оператора закрытия курсора.

Однако надо помнить, что СУБД автоматически закрывает все курсоры в случае завершения транзакции (COMMIT) или отката транзакции (ROLLBACK). После того как курсор закрыт его можно открыть снова, но при этом соответствующий запрос выполнится заново. Поэтому допустимо, что содержимое первого курсора будет не соответствовать его содержимому при повторном открытии, потому что за это время изменилось состояние БД.



Оператор закрытия курсора


Оператор закрытия курсора имеет простой синтаксис, он выглядит следующим образом:

CLOSE <имя_курсора>

Оператор закрытия курсора закрывает временную таблицу, созданную оператором открытия курсора, и прекращает доступ прикладной программы к этому объекту. Единственным параметром оператора закрытия является имя курсора.

Оператор закрытия может быть выполнен в любой момент после оператора открытия курсора.

В некоторых коммерческих СУБД кроме оператора закрытия курсора используется еще оператор деактивации (уничтожения) курсора. Например, в MS SQL Server 7.0 наряду с оператором закрытия курсора используется оператор

DEALLOCATE <имя_курсора>

Здесь оператор закрытия курсора не уничтожает набор данных, связанный с курсором, он только закрывает к нему доступ и освобождает все блокировки, которые ранее были связаны с данным курсором.

При выполнении оператора DEALLOCATE SQL Server освобождает разделяемую память, используемую командой описания курсора DECLARE. После выполнения этой команды невозможно выполнение команды OPEN для данного курсора.



Операторы, связанные с многострочными запросами


Рассмотрим более сложные многострочные запросы.

Для реализации многострочных запросов вводится новое понятие — понятие курсора или указателя набора записей. Для работы с курсором добавляется несколько новых операторов SQL:

Оператор DECLARE CURSOR — определяет выполняемый запрос, задает имя курсора и связывает результаты запроса с заданным курсором. Этот оператор не является исполняемым для запроса, он только определяет структуру будущего множества записей и связывает ее с уникальным именем курсора. Этот оператор подобен операторам описания данных в языках программирования.

Оператор OPEN дает команду СУБД выполнить описанный запрос, создать виртуальный набор строк, который соответствует заданному запросу. Оператор OPEN устанавливает указатель записей (курсор) перед первой строкой виртуального набора строк результата.

Оператор FETCH продвигает указатель записей на следующую позицию в виртуальном наборе записей. В большинстве коммерческих СУБД оператор перемещения FETCH реализует более широкие функции перемещения, он позволяет перемещать указатель на произвольную запись, вперед и назад, допускает как абсолютную адресацию, так и относительную адресацию, позволяет установить курсор на первую или последнюю запись виртуального набора.

Оператор CLOSE закрывает курсор и прекращает доступ к виртуальному набору записей. Он фактически ликвидирует связь между курсором и результатом выполнения базового запроса. Однако в коммерческих СУБД оператор CLOSE не всегда означает уничтожение виртуального набора записей. Мы коснемся этого далее, когда будем рассматривать работу с курсором в MS SQL Server 7.0.



Особенности встроенного SQL


При объединении операторов SQL с базовым языком программирования должны соблюдаться следующие принципы:

Операторы SQL включаются непосредственно в текст программы на исходном языке программирования. Исходная программа поступает на вход препроцессора SQL, который компилирует операторы SQL.

Встроенные операторы SQL могут ссылаться на переменные базового языка программирования.

Встроенные операторы SQL получают результаты SQL-запросов с помощью переменных базового языка программирования.

Для присвоения неопределенных значений (NULL) атрибутам отношений БД используются специальные функции.

Для обеспечения построчной обработки результатов запросов во встроенный SQL добавляются несколько новых операторов, которые отсутствуют в интерактивном SQL.

Операторы манипулирования данными не требуют изменения для их встраивания в программный SQL. Однако оператор поиска (SELECT) потребовал изменений.

Стандартный оператор SELECT возвращает набор данных, релевантный сформированным условиям запроса. В интерактивном SQL этот полученный набор данных просто выводится на консоль пользователя и он может просмотреть полученные результаты. Встроенный оператор SELECT должен создавать структуры данных, которые согласуются с базовыми языками программирования. Во встроенном SQL запросы делятся на 2 типа:

Однострочные запросы, где ожидаемые результаты соответствуют одной строке данных. Эта строка может содержать значения нескольких столбцов.

Многострочные запросы, результатом которых является получение целого набора строк. При этом приложение должно иметь возможность проработать все полученные строки. Значит, должен существовать механизм, который поддерживает просмотр и обработку полученного набора строк.

Первый тип запроса — однострочный запрос во встроенном SQL вызвал модификацию оператора SQL, которая выглядит следующим образом:

SELECT [{ALL | DISTINCT}] <список возвращаемых столбцов>

INTO <список переменных базового языка>

FROM <список исходных таблиц>



Мы видим, что во встроенный


[WHERE <условия соединения и поиска>]

Мы видим, что во встроенный SELECT добавился новый для нас раздел, содержащий список переменных базового языка. Именно в эти переменные будет помещен результат однострочного запроса, поэтому список переменных базового языка должен быть согласован как по порядку, так и по типу и размеру данных со списком возвращаемых столбцов. По правилам любого языка программирования все базовые переменные предварительно описаны в прикладной программе. Например, если в нашей БД «Библиотека» существует таблица READERS (Читатели), мы можем получить сведения о конкретном читателе.

CREATE TABLE READERS

(

READER_ID Small int(4) PRIMARY KEY,

FIRSTJAME char (30) NOT NULL,

LAST_NAME char(30) NOT NULL,

ADRES char(50) , HOME_PHON char(12) ,

WORK_PHON char (12) .

BIRTH_DAY date СНЕCK( DateDiff (year, GetDate(),BIRTH_DAY) >=17 )

);

Для этого опишем базовые переменные. Рассмотрим пример для MS SQL SERVER 7.0, используя язык Transact SQL. При описании локальных переменных в языке Transact SQL используется специальный символ @. Комментарии в Transact SQL заключены в парные символы /* комментарий */.

DECLARE @READER_ID int

DECLARE @FIRS_NAME Char(30). @LAST_NAME Char(30). @ADRES Char(50)

DECLARE @HOME_PHON Char(12) .@WORK_PHON Char(12)

/* зададим уникальный номер читательского билета */

SET @READER_ID = 4

/* теперь выполним запрос и поместим полученные сведения в определенные

ранее переменные */

SELECT READERS.FIRST_NAME. READERS.LAST_NAME. READERS.ADRES.

READERS.HOME_PHON. READERS.WORK_PHON

INTO @FIRS_NAME, @LAST_NAME.

@PADRES. @HOME_PHON.@WORK_PHON

FROM READERS

WHERE READERS.READER_ID = @READER_ID

В этом простом примере мы имена переменных сделали такими же, как и имена столбцов таблицы READERS, но это необязательно. Однако транслятор различает эти объекты, именно поэтому в диалекте Transact SQL принято локальные переменные предварять специальным символом @. В примере мы использовали квалифицированные имена полей, имена полей, предваряемые именем таблицы.В нашем случае это тоже необязательно, потому что запрос выбирает данные только из одной таблицы.

В нашем примере базовые переменные играют разную роль. Локальная переменная PREADER_ID является входной по отношению к запросу. Ей присвоено значение 4, и в запросе это значение используется для фильтрации данных, поэтому эта переменная используется в условии WHERE.

Остальные базовые переменные играют роль выходных переменных, в них СУБД помещает результат выполнения запроса, помещая в них значения соответствующих полей отношения READERS, извлеченные из БД.


Триггеры


Фактически триггер — это специальный вид хранимой процедуры, которую SQL Server вызывает при выполнении операций модификации соответствующих таблиц. Триггер автоматически активизируется при выполнении операции, с которой он связан. Триггеры связываются с одной или несколькими операциями модификации над одной таблицей.

В разных коммерческих СУБД рассматриваются разные триггеры. Так, в MS SQL Server триггеры определены только как постфильтры, то есть такие триггеры, которые выполняются после свершения события.

В СУБД Oracle определены два типа триггеров: триггеры, которые могут быть запущены перед реализацией операции модификации, они называются BEFORE-триггерами, и триггеры, которые активизируются после выполнения соответствующей модификации, аналогично триггерам MS SQL Server, — они называются AFTER-тригерами.

Триггеры могут быть эффективно использованы для поддержки семантической целостности БД, однако приоритет их ниже, чем приоритет правил-ограничений (constraints), задаваемых на уровне описания таблиц и на уровне связей между таблицами. При написании триггеров всегда надо помнить об этом, при нарушении правил целостности по связям (DRI declarative Referential Integrity) триггер просто может никогда не сработать.

В стандарте SQL1 ни хранимые процедуры, ни триггеры были не определены. Но в добавлении к стандарту SQL2, выпущенному в 1996 году, те и другие объекты были стандартизированы и определены.

Для создания триггеров используется специальная команда:

CREATE TRIGGER <имя_триггера> ON <имя_таблицы>

FOR {[INSERT][. UPDATE] [, DELETE] } [WITH ENCRIPTING]

AS

SQL-операторы (Тело триггера)

Имя триггера является идентификатором во встроенном языке программирования СУБД и должно удовлетворять соответствующим требованиям.

В параметре FOR задается одна или несколько операций модификации, которые запускают данный триггер.

Параметр WITH ENCRIPTING имеет тот же смысл, что и для хранимых процедур, он скрывает исходный текст тела триггера.

Существует несколько правил, которые ограничивают



Существует несколько правил, которые ограничивают набор операторов, которые могут быть использованы в теле триггера.

Так, в большинстве СУБД действуют следующие ограничения:

Нельзя использовать в теле триггера операции создания объектов БД (новой БД, новой таблицы, нового индекса, новой хранимой процедуры, нового триггера, новых индексов, новых представлений).

Нельзя использовать в триггере команду удаления объектов DROP для всех типов базовых объектов БД.

Нельзя использовать в теле триггера команды изменения базовых объектов ALTER TABLE, ALTER DATABASE.

Нельзя изменять права доступа к объектам БД, то есть выполнять команду GRAND или REVOKE.

Нельзя создать триггер для представления (VIEW) .

В отличие от хранимых процедур, триггер не может возвращать никаких значений, он запускается автоматически сервером и не может связаться самостоятельно ни с одним клиентом.

Рассмотрим пример триггера, который срабатывает при удалении экземпляра некоторой книги, например, в случае утери этой книги читателем. Что же может делать этот триггер? А он может выполнять следующую проверку: проверять, остался ли еще хоть один экземпляр данной книги в библиотеке, и если это был последний экземпляр книги в библиотеке, то резонно удалить описание книги из предметного каталога, чтобы наши читатели зря не пытались заказать эту книгу.

Текст этого триггера на языке Transact SQL приведен ниже:

/* Проверка существования данного триггера в системном каталоге */

if exists (select * from sysobjects

where id = object_id('dbo.DEL_EXEMP') and sysstat & Oxf = 8)

drop trigger dbo.DEL_EXEMP

GO

CREATE TRIGGER DEL_EXEMP ON dbo.EXEMPLAR

/* мы создаем триггер для таблицы EXEMPLAR */

FOR DELETE /* только для операции удаления */

AS

/* опишем локальные переменные */

DECLARE @Ntek int

/* количество оставшихся экземпляров удаленной книги */

DECLARE @DEL_EX VARCHAR(12)

/* шифр удаленного экземпляра*/

Begin

/* по временной системной таблице, содержащей удаленные записи, определяем шифр книги, соответствующей последнему удаленномуэкземпляру */

SELECT @DEL_EX = ISBN From deleted

/* вызовем хранимую процедуру, которая определит количество экземпляров книги с заданным шифром */

ЕХЕС @Ntek = COUNT_EX @DEL_EX

/* Если больше нет экземпляров данной книги, то мы удаляем запись о книге из таблицы BOOKS */

IF @Ntek = 0 DELETE from BOOKS WHERE BOOKS.ISBN = @DEL_EXENDGO




Удаление и обновление данных с использованием курсора


Курсоры в прикладных программах часто используются для последовательного просмотра данных. Если курсор не связан с операцией группировки, то фактически каждая строка курсора соответствует строго только одной строке исходной таблицы, и в этом случае курсор удобно использовать для оперативной корректировки данных. В стандарте определены операции модификации данных, связанные с курсором. Операция удаления строки, связанной с текущим указателем курсора, имеет следующий синтаксис:

DELETE FROM <имя_таблицы> WHERE CURRENT OF <имя курсора>

Если указанный в операторе курсор открыт и установлен на некоторую строку, и курсор определяет изменяемую таблицу, то текущая строка курсора удаляется, а он позиционируется перед следующей строкой. Таблица, указанная в разделе FROM оператора DELETE, должна быть таблицей, указанной в самом внешнем разделе FROM спецификации курсора.

Если нам необходимо прочитать следующую строку курсора, то надо снова выполнить оператор FETCH NEXT.

Аналогично курсор может быть использован для модификации данных. Синтаксис операции позиционной модификации следующий:

UPDATE <имя__таблицы> SET <имя_столбца1>= {<значение> | NULL} [{.<имя_столбца N>= {<значение> | NULL}}...]

WHERE CURRENT OF <имя_курсора>

Одним оператором позиционного обновления могут быть заменены несколько значений столбцов строки таблицы, соответствующей текущей позиции курсора. После выполнения операции модификации позиция курсора не изменяется.

Для того чтобы можно было применять позиционные операторы удаления (DELETE) и модификации (UPDATE), курсор должен удовлетворять определенным требованиям. Согласно стандарту SQL1, это следующие требования:

Запрос, связанный с курсором, должен считывать данные из одной исходной таблицы, то есть в предложении FROM запроса SELECT, связанного с определением курсора (DECLARE CURSOR), должна быть задана только одна таблица.

В запросе не может присутствовать параметр упорядочения ORDER BY.

Для того чтобы сохранялось взаимно


Для того чтобы сохранялось взаимно однозначное соответствие строк курсора и исходной таблицы, курсор не должен идентифицировать упорядоченный набор данных.

В запросе не должно присутствовать ключевое слово DISTINCT.

Запрос не должен содержать операций группировки, то есть в нем не должно присутствовать предложение GROUP BY или HAVING.

Пользователь, который хочет применить операции позиционного удаления или обновления, должен иметь соответствующие права на выполнение данных операций над базовой таблицей. (О правах и привилегиях пользователя мы поговорим в главе 13.)

Использование курсора для операций обновления значительно усложняет работу с подобным курсором со стороны СУБД, поэтому операции, связанные с позиционной модификацией, выполняются гораздо медленнее, чем операции с курсорами, которые используются только для чтения. Именно поэтому рекомендуется обязательно указывать в операторе определения курсора предложение READ ONLY, если вы не собираетесь использовать данный курсор для операций модификации. По умолчанию, если нет дополнительных указаний, СУБД создает курсор с возможностью модификации.

Курсоры — удобное средство для формирования бизнес-логики приложений, но следует помнить, что если вы открываете курсор с возможностью модификации, то СУБД блокирует все строки базовой таблицы, вошедшие в ваш курсор, и тем самым блокируется работа других пользователей с данной таблицей.

Чтобы свести к минимуму количество требуемых блокировок, при работе интерактивных программ следует придерживаться следующих правил:

Необходимо делать транзакции как можно короче.

Необходимо выполнять оператор завершения COMMIT после каждого запроса и как можно скорее после изменений, сделанных программой.

Необходимо избегать программ, в которых осуществляется интенсивное взаимодействие с пользователем или осуществляется просмотр очень большого количества строк данных.

Если возможно, то лучше не применять прокручиваемые курсоры (SCROLL), потому что они требуют блокирования всех строк выборки, связанных с открытым курсором.

Использование простого последовательного курсора позволит



Использование простого последовательного курсора позволит системе разблокировать текущую строку, как только будет выполнена операция FETCH, что минимизирует блокировки других пользователей, работающих параллельно с вами и использующих те же таблицы.

Если возможно, определяйте курсор как READ ONLY.

Однако когда мы рассматривали модели «клиент—сервер», применяемые в БД, то определили, что в развитых моделях серверов баз данных большая часть бизнес-логики клиентского приложения выполняется именно на сервере, а не на клиенте. Для этого используются специальные объекты, которые называются хранимыми процедурами и хранятся в БД, как таблицы и другие базовые объекты.

В связи с этим фактом курсоры, которые могут быть использованы в приложениях, обычно делятся на курсоры сервера и курсоры клиента. Курсор сервера создается и выполняется на сервере, данные, связанные с ним, не пересылаются на компьютер клиента. Курсоры сервера определяются обычно в хранимых процедурах или триггерах.

Курсоры клиента — это те курсоры, которые определяются в прикладных программах, выполняемых на клиенте. Набор строк, связанный с данным курсором, пересылается на клиент и там обрабатывается. Если с курсором связан большой набор данных, то операция пересылки набора строк, связанных с курсором, может занять значительное время и значительные ресурсы сети и клиентского компьютера.

Конечно, курсоры сервера более экономичны и выполняются быстрее. Поэтому последней рекомендацией, связанной с использованием курсоров, будет рекомендация трансформировать логику работы вашего приложения, чтобы как можно чаще вместо курсоров клиента использовать курсоры сервера.




Защита информации в базах данных


В современных СУБД поддерживается один из двух наиболее общих подходов к вопросу обеспечения безопасности данных: избирательный подход и обязательный подход. В обоих подходах единицей данных или «объектом данных», для которых должна быть создана система безопасности, может быть как вся база данных целиком, так и любой объект внутри базы данных.

Эти два подхода отличаются следующими свойствами:

В случае избирательного управления некоторый пользователь обладает различными правами (привилегиями или полномочиями) при работе с данными объектами. Разные пользователи могут обладать разными правами доступа к одному и тому же объекту. Избирательные права характеризуются значительной гибкостью.

В случае избирательного управления, наоборот, каждому объекту данных присваивается некоторый классификационный уровень, а каждый пользователь обладает некоторым уровнем допуска. При таком подходе доступом к определенному объекту данных обладают только пользователи с соответствующим уровнем допуска.

Для реализации избирательного принципа предусмотрены следующие методы. В базу данных вводится новый тип объектов БД — это пользователи. Каждому пользователю в БД присваивается уникальный идентификатор. Для дополнительной защиты каждый пользователь кроме уникального идентификатора снабжается уникальным паролем, причем если идентификаторы пользователей в системе доступны системному администратору, то пароли пользователей хранятся чаще всего в специальном кодированном виде и известны только самим пользователям.

Пользователи могут быть объединены в специальные группы пользователей. Один пользователь может входить в несколько групп. В стандарте вводится понятие группы PUBLIC, для которой должен быть определен минимальный стандартный набор прав. По умолчанию предполагается, что каждый вновь создаваемый пользователь, если специально не указано иное, относится к группе PUBLIC.

Привилегии или полномочия пользователей или групп — это набор действий (операций), которые они могут выполнять над объектами БД.

В последних версиях ряда коммерческих



В последних версиях ряда коммерческих СУБД появилось понятие «роли». Роль — это поименованный набор полномочий. Существует ряд стандартных ролей, которые определены в момент установки сервера баз данных. И имеется возможность создавать новые роли, группируя в них произвольные полномочия. Введение ролей позволяет упростить управление привилегиями пользователей, структурировать этот процесс. Кроме того, введение ролей не связано с конкретными пользователями, поэтому роли могут быть определены и сконфигурированы до того, как определены пользователи системы.

Пользователю может быть назначена одна или несколько ролей.

Объектами БД, которые подлежат защите, являются все объекты, хранимые в БД: таблицы, представления, хранимые процедуры и триггеры. Для каждого типа объектов есть свои действия, поэтому для каждого типа объектов могут быть определены разные права доступа.

На самом элементарном уровне концепции обеспечения безопасности баз данных исключительно просты. Необходимо поддерживать два фундаментальных принципа: проверку полномочий и проверку подлинности (аутентификацию).

Проверка полномочий основана на том, что каждому пользователю или процессу информационной системы соответствует набор действий, которые он может выполнять по отношению к определенным объектам. Проверка подлинности означает достоверное подтверждение того, что пользователь или процесс, пытающийся выполнить санкционированное действие, действительно тот, за кого он себя выдает.

Система назначения полномочий имеет в некотором роде иерархический характер. Самыми высокими правами и полномочиями обладает системный администратор или администратор сервера БД. Традиционно только этот тип пользователей может создавать других пользователей и наделять их определенными полномочиями.

СУБД в своих системных каталогах хранит как описание самих пользователей, так и описание их привилегий по отношению ко всем объектам.

Далее схема предоставления полномочий строится по следующему принципу.

который создал данный объект. Владелец


Каждый объект в БД имеет владельца — пользователя, который создал данный объект. Владелец объекта обладает всеми правами-полномочиями на данный объект, в том числе он имеет право предоставлять другим пользователям полномочия по работе с данным объектом или забирать у пользователей ранее предоставленные полномочия.

В ряде СУБД вводится следующий уровень иерархии пользователей — это администратор БД. В этих СУБД один сервер может управлять множеством СУБД (например, MS SQL Server, Sybase).

В СУБД Oracle применяется однобазовая архитектура, поэтому там вводится понятие подсхемы — части общей схемы БД и вводится пользователь, имеющий доступ к подсхеме.

В стандарте SQL не определена команда создания пользователя, но практически во всех коммерческих СУБД создать пользователя можно не только в интерактивном режиме, но и программно с использованием специальных хранимых процедур. Однако для выполнения этой операции пользователь должен иметь право на запуск соответствующей системной процедуры.

В стандарте SQL определены два оператора: GRANT и REVOKE соответственно предоставления и отмены привилегий.

Оператор предоставления привилегий имеет следующий формат:

GRANT {<список действий>| ALL PRIVILEGES }

ON <имя_объекта> ТО {<имя_пользователя> | PUBLIC }
[WITH GRANT OPTION ]

Здесь список действий определяет набор действий из общедопустимого перечня действий над объектом данного типа.

Параметр ALL PRIVILEGES указывает, что разрешены все действия из допустимых для объектов данного тина.

<имя_объекта> — задает имя конкретного объекта: таблицы, представления, хранимой процедуры, триггера.

<имя_пользователя> или PUBLIC определяет, кому предоставляются данные привилегии.

Параметр WITH GRANT OPTION является необязательным и определяет режим, при котором передаются не только права на указанные действия, но и право передавать эти права другим пользователям. Передавать права в этом случае пользователь может только в рамках разрешенных ему действий.

у нас существуют три пользователя



Рассмотрим пример, пусть у нас существуют три пользователя с абсолютно уникальными именами userl, user2 и userS. Все они являются пользователями одной БД.

User1 создал объект Таb1, он является владельцем этого объекта и может передать права на работу с эти объектом другим пользователям. Допустим, что пользователь user2 является оператором, который должен вводить данные в ТаЫ (например, таблицу новых заказов), а пользователь user 3 является большим начальником (например, менеджером отдела), который должен регулярно просматривать введенные данные.

Для объекта типа таблица полным допустимым перечнем действий является набор из четырех операций: SELECT, INSERT, DELETE, UPDATE. При этом операция обновление может быть ограничена несколькими столбцами.
Общий формат оператора назначения привилегий для объекта типа таблица будет иметь следующий синтаксис:

GRANT {[SELECT][.INSERT][.DELETE][,UPDATE (<список столбцов»)]}
ON <имя таблицы»

ТО {<имя_пользователя> | PUBLIC } [WITH GRANT OPTION ]

Тогда резонно будет выполнить следующие назначения:

GRANT INSERT

ON Tab1

TO user2
GRANT SELECT
ON Tabl
TO user3

Эти назначения означают, что пользователь user2 имеет право только вводить новые строки в отношение Таb1, а пользователь user3 имеет право просматривать все строки в таблице Таb1.

При назначении прав доступа на операцию модификации можно уточнить, значение каких столбцов может изменять пользователь. Допустим, что менеджер отдела имеет право изменять цену на предоставляемые услуги. Предположим, что цена задается в столбце COST таблицы ТаЫ. Тогда операция назначения привилегий пользователю user3 может измениться и выглядеть следующим образом:

GRANT SELECT. UPDATE (COST) ON Tabl TO user3

Если наш пользователь userl предполагает, что пользователь user4 может его замещать в случае его отсутствия, то он может предоставить этому пользователю все права по работе с созданной таблицей Таb1.

GRANT ALL PRIVILEGES

ON Tabl

TO user4 WITH GRANT OPTION

B этом случае пользователь user4



B этом случае пользователь user4 может сам назначать привилегии по работе с таблицей Таb1 в отсутствие владельца объекта пользователя user1. Поэтому в случае появления нового оператора пользователя user5 on может назначить ему права на ввод новых строк в таблицу командой

GRANT INSERT

ON Таb1

ТО user5

Если при передаче полномочий набор операций над объектом ограничен, то пользователь, которому переданы эти полномочия, может передать другому пользователю только те полномочия, которые есть у него, или часть этих полномочий. Поэтому если пользователю user4 были делегированы следующие полномочия:

GRANT SELECT, UPDATE, DELETE

ON Tabl
TO user4
WITH GRANT OPTION.

то пользователь user4 не сможет передать полномочия на ввод данных пользователю user5, потому что эта операция не входит в список разрешенных для него самого.

Кроме непосредственного назначения прав по работе с таблицами эффективным методом защиты данных может быть создание представлений, которые будут содержать только необходимые столбцы для работы конкретного пользователя и предоставление прав на работу с данным представлением пользователю.

Так как представления могут соответствовать итоговым запросам, то для этих представлений недопустимы операции изменения, и, следовательно, для таких представлений набор допустимых действий ограничивается операцией SELECT. Если же представления соответствуют выборке из базовой таблицы, то для такого представления допустимыми будут все 4 операции: SELECT, INSERT, UPDATE и DELETE.

Для отмены ранее назначенных привилегий в стандарте SQL определен оператор REVOKE. Оператор отмены привилегий имеет следующий синтаксис:

REVOKE {<список операций | ALL PRIVILEGES}
ON <имя_объекта>
FROM {<список пользователей | PUBLIC } {CASCADE | RESTRICT }

Параметры CASCADE или RESTRICT определяют, каким образом должна производиться отмена привилегий. Параметр CASCADE отменяет привилегии не только пользователя, который непосредственно упоминался в операторе GRANT при предоставлении ему привилегий, но и всем пользователям, которым этот пользователь присвоил привилегии, воспользовавшись параметром WITH GRANT OPTION.

и пользователя users, которому пользователь



Например, при использовании операции:

REVOKE ALL PRIVILEGES
ON Tab1
TO user4 CASCADE

будут отменены привилегии и пользователя users, которому пользователь user4 успел присвоить привилегии.

Параметр RESTRICKT ограничивает отмену привилегий только пользователю, непосредственно упомянутому в операторе REVOKE. Но при наличии делегированных привилегий этот оператор не будет выполнен. Так, например, операция:

REVOKE ALL PRIVILEGES
ON Tabl
TO user4 RESTRICT

не будет выполнена, потому что пользователь user4 передал часть своих полномочий пользователю user5.

Посредством оператора REVOKE можно отобрать все или только некоторые из ранее присвоенных привилегий по работе с конкретным объектом. При этом из описания синтаксиса оператора отмены привилегий видно, что можно отобрать привилегии одним оператором сразу у нескольких пользователей или у целой группы PUBLIC.

Поэтому корректным будет следующее использование оператора REVOKE:

REVOKE INSERT
ON Tab1
TO user2,user4 CASCADE

При работе с другими объектами изменяется список операций, которые используются в операторах GRANT и REVOKE.

По умолчанию действие, соответствующее запуску (исполнению) хранимой процедуры, назначается всем членам группы PUBLIC.

Если вы хотите изменить это условие, то после создания хранимой процедуры необходимо записать оператор REVOKE. REVOKE EXECUTE ON COUNT_EX TO PUBLIC CASCADE И теперь мы можем назначить новые права пользователю user4.

GRANT EXECUTE
ON COUNT_EX
TO user4

Системный администратор может разрешить некоторому пользователю создавать и изменять таблицы в некоторой БД. Тогда он может записать оператор предоставления прав следующим образом:

GRANT CREATE TABLE, ALTER TABLE.
DROP TABLE ON DB_LIB TO userl

В этом случае пользователь userl может создавать, изменять или удалять таблицы в БД DB_LIB, однако он не может разрешить создавать или изменять таблицы в этой БД другим пользователям, потому что ему дано разрешение без права делегирования своих возможностей.

В некоторых СУБД пользователь может


В некоторых СУБД пользователь может получить права создавать БД. Например, в MS SQL Server системный администратор может предоставить пользователю main_user право на создание своей БД на данном сервере. Это может быть сделано следующей командой:

GRANT CREATE DATABASE
ON SERVER_0
TO main user

По принципу иерархии пользователь main_user, создав свою БД, теперь может предоставить права на создание или изменение любых объектов в этой БД другим пользователям.

В СУБД, которые поддерживают однобазовую архитектуру, такие разрешения недопустимы. Например, в СУБД Oracle на сервере создается только одна БД, но пользователи могут работать па уровне подсхемы (части таблиц БД и связанных с ними объектов). Поэтому там вводится понятие системных привилегий. Их очень много, 80 различных привилегий.

Для того чтобы разрешить пользователю создавать объекты внутри этой БД, используется понятие системной привилегии, которая может быть назначена одному или нескольким пользователям. Они выдаются только на действия и конкретный тип объекта. Поэтому, если вы, как системный администратор, предоставили пользователю право создания таблиц (CREATE TABLE), то для того чтобы он мог создать триггер для таблицы, ему необходимо предоставить еще одну системную привилегию CREATE TRIGGER. Система защиты в Oracle считается одной из самых мощных, по это имеет и обратную сторону — она весьма сложная. Поэтому задача администрирования в Oracle требует хорошего знания как семантики принципов поддержки прав доступа, так и физической реализации этих возможностей.



Проверка полномочий


Второй задачей при работе с БД, как указывалось ранее, является проверка полномочий пользователей. Полномочия пользователей хранятся в специальных системных таблицах, и их проверка осуществляется ядром СУБД при выполнении каждой операции. Логически для каждого пользователя и каждого объекта в БД как бы строится некоторая условная матрица, где по одному измерению расположены объекты, а по другому — пользователи. На пересечении каждого столбца и каждой строки расположен перечень разрешенных операций для данного пользователя над данным объектом. С первого взгляда кажется, что эта модель проверки достаточно устойчивая. Но сложность возникает тогда, когда мы используем косвенное обращение к объектам. Например, пользователю user_N не разрешен доступ к таблице Таb1, но этому пользователю разрешен запуск хранимой процедуры SP_N, которая делает выборку из этого объекта. По умолчанию все хранимые процедуры запускаются под именем их владельца.

Такие проблемы должны решаться организационными методами. При разрешении доступа некоторых пользователей необходимо помнить о возможности косвенного доступа.

В любом случае проблема защиты никогда не была чисто технической задачей, это комплекс организационно-технических мероприятий, которые должны обеспечить максимальную конфиденциальность информации, хранимой в БД.

Кроме того, при работе в сети существует еще проблема проверки подлинности полномочий.

Эта проблема состоит в следующем. Допустим, процессу 1 даны полномочия по работе с БД, а процессу 2 такие полномочия не даны. Тогда напрямую процесс 2 не может обратиться к БД, но он может обратиться к процессу 1 и через него получить доступ к информации из БД.

Поэтому в безопасной среде должна присутствовать модель проверки подлинности, которая обеспечивает подтверждение заявленных пользователями или процессами идентификаторов. Проверка полномочий приобрела еще большее значение в условиях массового распространения распределенных вычислений. При существующем высоком уровне связности вычислительных систем необходимо контролировать все обращения к системе.

Проблемы проверки подлинности обычно относят



Проблемы проверки подлинности обычно относят к сфере безопасности коммуникаций и сетей, поэтому мы не будем их здесь более обсуждать, за исключением следующего замечания. В целостной системе компьютерной безопасности, где четкое выполнение программы защиты информации обеспечивается за счет взаимодействия соответствующих средств в операционных системах, сетях, базах данных, проверка подлинности имеет прямое отношение к безопасности баз данных.

Заметим, что модель безопасности, основанная на базовых механизмах проверки полномочий и проверки подлинности, не решает таких проблем, как украденные пользовательские идентификаторы и пароли или злонамеренные действия некоторых пользователей, обладающих полномочиями, — например, когда программист, работающий над учетной системой, имеющей полный доступ к учетной базе данных, встраивает в код программы «Троянского коня» с целью хищения или намеренного изменения информации, хранимой в БД. Такие вопросы выходят за рамки нашего обсуждения средств защиты баз данных, но следует тем не менее представлять себе, что программа обеспечения информационной безопасности должна охватывать не только технические области (такие как защита сетей, баз данных и операционных систем), но и проблемы физической защиты, надежности персонала (скрытые проверки), аудит, различные процедуры поддержки безопасности, выполняемые вручную или частично автоматизированные.


Реализация системы защиты в MS SQL Server


SQL server 6.5 поддерживает З режима проверки при определении прав пользователя:

Стандартный (standard).

Интегрированный (integrated security).

Смешанный (mixed).

Стандартный режим защиты предполагает, что каждый пользователь должен иметь учетную запись как пользователь домена NT Server. Учетная запись пользователя домена включает имя пользователя и его индивидуальный пароль. Пользователи доменов могут быть объединены в группы. Как пользователь домена пользователь получает доступ к определенным ресурсам домена. В качестве одного из ресурсов домена и рассматривается SQL Server. Но для доступа к SQL Server пользователь должен иметь учетную запись пользователя MS SQL Server. Эта учетная запись также должна включать уникальное имя пользователя сервера и его пароль. При подключении к операционной среде пользователь задает свое имя и пароль пользователя домена. При подключении к серверу баз данных пользователь задает свое уникальное имя пользователя SQL Server и свой пароль.

Интегрированный режим предполагает, что для пользователя задается только одна учетная запись в операционной системе, как пользователя домена, a SQL Server идентифицирует пользователя по его данным в этой учетной записи. В этом случае пользователь задает только одно свое имя и один пароль.

В случае смешанного режима част], пользователей может быть подключена к серверу с использованием стандартного режима, а часть с использованием интегрированного режима.

В MS SQL Server 7.0 оставлены только 2 режима: интегрированный, называемый Windows NT Authentication Mode (Windows NT Authentication), и смешанный, Mixed Mode (Windows NT Authentication and SQL Server Authentication). Алгоритм проверки аутентификации пользователя в MS SQL Server 7.0 приведен на рис. 13.1.

Рис. 13.1. Алгоритм проверки аутентификации пользователя в MS SQL Server 7.0

При попытке подключения к серверу БД сначала проверяется, какой метод аутентификации определен для данного пользователя. Если определен Windows NT Authentication Mode, то далее проверяется, имеет ли данный пользователь домена доступ к ресурсу SQL Server, если он имеет доступ, то выполняется попытка подключения с использованием имени пользователя и пароля, определенных для пользователя домена; если данный пользователь имеет права подключения к SQL Server, то подключение выполняется успешно, в противном случае пользователь получает сообщение о том, что данному пользователю не разрешено подключение к SQL Server. При использовании смешанного режима аутентификации средствами SQL Server проводится последовательная проверка имени пользователя (login) и его пароля (password); если эти параметры заданы корректно, то подключение завершается успешно, в противном случае пользователь также получает сообщение о невозможности подключиться к SQL Server.

Для СУБД Oracle всегда используется в дополнение к имени пользователя и пароля в операционной среде его имя и пароль для работы с сервером БД.



Обобщенная архитектура СУБД


Мы рассмотрели отдельные аспекты работы СУБД. Теперь попробуем кратко обобщить все, что узнали, и построим некоторую условную обобщенную структуру СУБД. На рис. 14.1 нзрбражена такая структура. Здесь условно показано, что СУБД должна управлять внешней памятью, в котором расположены файлы с данными, файлы журналов и файлы системного каталога.

С другой стороны, СУБД управляет и оперативной памятью, в которой располагаются буфера с данными, буфера журналов, данные системного каталога, которые необходимы для поддержки целостности и проверки привилегии пользователей. Кроме того, и оперативной памяти во время работы СУБД располагается информация, которая соответствует текущему состоянию обработки запросов, там хранятся планы выполнения скомпилированных запросов и т. д.

Модуль управления внешней памятью обеспечивает создание необходимых структур внешней памяти как для хранения данных, непосредственно входящих в БД, так и для служебных целей, например для ускорения доступа к данным в некоторых случаях (обычно для этого используются индексы). Как мы рассматривали ранее, в некоторых реализациях СУБД активно используются возможности существующих файловых систем, в других работа производится вплоть до уровня устройств внешней памяти. Но подчеркнем, что в развитых СУБД пользователи в любом случае не обязаны знать, использует ли СУБД файловую систему, и если использует, то как организованы файлы. В частности, СУБД поддерживает собственную систему именования объектов БД.

Модуль управления буферами оперативной памяти предназначен для решения задач эффективной буферизации, которая используется практически для выполнения всех остальных функций СУБД.

Условно оперативную память, которой управляет СУБД, можно представить как совокупность буферов, хранящих страницы данных, буферов, хранящих страницы журналов транзакций и область совместно используемого пула (см. рис. 14.2). Последняя область содержит фрагменты системного каталога, которые необходимо постоянно держать в оперативной памяти, чтобы ускорить обработку запросов пользователей, и область операторов SQL с курсорами.

в некоторых реализациях называются словарем


Фрагменты системного каталога в некоторых реализациях называются словарем данных. В стандарте SQL2 определены общие требования к системному каталогу.


Рис. 14.1. Обобщенная структура СУБД


Рис. 14.2. Оперативная память, управляемая СУБД

Системный каталог в реляционных СУБД представляет собой совокупность специальных таблиц, которыми владеет сама СУБД. Таблицы системного каталога создаются автоматически при установке программного обеспечения сервера БД. Все системные таблицы обычно объединяются некоторым специальным «системным идентификатором пользователя». При обработке SQL-запросов СУБД постоянно обращается к этим таблицам. В некоторых СУБД разрешен ограниченный доступ пользователей к ряду системных таблиц, однако только в режиме чтения. Только системный администратор имеет некоторые права на модификацию данных в некоторых системных таблицах.

Каждая таблица системного каталога содержит информацию об отдельных структурных элементах БД. В стандарте SQL2 определены следующие системные таблицы:

Таблица 14.1. Содержание системного каталога по стандарту SQL2


Системная таблица

Содержание

USERS -

Одна строка для каждого идентификатора пользователя с зашифрованным паролем

SCHEMA

Одна строка для каждой информационной схемы

DATA_TYPE_DESCRIPTION

Одна строка для каждого домена или столбца, имеющего определенный тип данных

DOMAINS

Одна строка для каждого домена

DOMAIN_CONSTRA1NS

Одна строка для каждого ограничивающего условия, наложенного на домен

TABLES

Одна строка для каждой таблицы с указанием имени, владельца, количества столбцов, размеров данных столбцов, и т. д.

VIEWS

Одна строка для каждого представления с указанием имени, имени владельца, запроса, который определяет представление и т. д.

COLUMNS

Одна строка для каждого столбца с указанием имени столбца, имени таблицы или представления, к которому он относится, типа данных столбца, его размера, допустимости или недопустимости неопределенных значений (NULL ) и т. д.

VIEW_TABLE_USAGE

Одна стр.ока для каждой таблицы, на которую имеется ссылка в каком-либо представлении (если представление многотабличное, то для каждой таблицы заносится одна строка)

VIEW_COLUMN_USAGE

Одна строка для каждого столбца, на который имеется ссылка в некотором представлении

TABLE_CONSTRAINS

Одна строка для каждого условия ограничения, заданного в каком-либо определении таблицы

KEY_COLUMN_USAGE

Одна строка для каждого столбца, на который наложено условие уникальности и который присутствует в определении первичного или внешнего ключа (если первичный или внешний ключ заданы несколькими столбцами, то для каждого из них задается отдельная строка)

REFERENTIAL_CONSTRAINTS

Одна строка для каждого внешнего ключа, присутствующего в определении таблицы

CHECK_ CONSTRAINTS

Одна строка для каждого условия проверки, заданного в определении таблицы

CHECK_TABLE_USAGE

Одна строка для каждой таблицы, на которую имеется ссылка в условиях проверки, ограничительном условии для домена или всей таблицы

<

Одна строка для каждого столбца,



Системная таблица

Содержание

CHECK_COLUMN_USAGE

Одна строка для каждого столбца, на который имеется ссылка в условии проверки, ограничительном условии для домена или ином ограничительном условии

ASSERTIONS

Одна строка для каждого декларативного утверждения целостности

TABLE_PRIVILEGES

Одна строка для каждой привилегии, предоставленной на какую-либо таблицу

COLUMN_PRIVILEGES

Одна строка для каждой привилегии, предоставленной на какой-либо столбец

USAGE_PRIVILEGES

Одна строка для каждой привилегии, предоставленной на какой-либо домен, набор символов и т. д.

CHARACTER_SETS

Одна строка для каждого заданного набора символов

COLLATIONS

Одна строка для заданной последовательности

TRANSLATIONS

Одна строка для каждого заданного преобразования

SQL_LAGUAGES

Одна строка для каждого заданного языка, поддерживаемого СУБД


Стандарт SQL2 не требует, чтобы СУБД в точности поддерживала требуемый набор системных таблиц. Стандарт ограничивается требованием того, чтобы для рядовых пользователей были доступны некоторые специальные представления системного каталога. Поэтому системные таблицы организованы по-разному в разных СУБД и имеют различные имена, но большинство СУБД предо-ставля-ют ряд основных представлений рядовым пользователям.

Кроме того, системный каталог отражает некоторые дополнительные возможности, предоставляемые конкретными СУБД. Так, например, в системном каталоге Oracle присутствуют таблицы синонимов.

Область SQL содержит данные связывания, временные буферы, дерево разбора и план выполнения для каждого оператора SQL, переданного серверу БД. Область разделяемого пула ограничена в размере, поэтому, возможно, в ней не могут поместиться все операторы SQL, которые были выполнены с момента запуска сервера БД. Ядро СУБД удаляет старые, давно не используемые операторы, освобождая память под новые операторы SQL. Если пользователь выполняет запрос, план выполнения которого уже хранится в разделяемом пуле, то СУБД не производит его разбор и построение нового плана, она сразу запускает его на выполнение, возможно, с новыми параметрами.

Модуль управления транзакциями поддерживает механизмы фиксации и отката транзакций, он связан с модулем управления буферами оперативной памяти и обеспечивает сохранение всей информации, которая требуется после мягких или жестких сбоев в системе. Кроме того, модуль управления транзакциями содержит специальный механизм поиска тупиковых ситуаций или взаимоблокировок и реализует одну из принятых стратегий принудительного завершения транзакций для развязывания тупиковых ситуаций.

Особое внимание надо обратить на модуль поддержки SQL. Это практически транслятор с языка SQL и блок оптимизации запросов.

В общем, оптимизация запросов может быть разделена на синтаксическую и семантическую.



Методы семантической оптимизации запросов


Рассмотренные ранее методы никак не связаны с семантикой конкретной БД, они применимы к любой БД, вне зависимости от ее конкретного содержания. Семантические методы оптимизации основаны как раз на учете семантики конкретной БД. Таких методов в различных реализациях может быть множество, мы с вами коснемся лишь некоторых из них:

Преобразование запросов с учетом семантической информации. Это прежде всего относится к запросам, которые выполняются над представлениями. Само представление представляет собой запрос. В БД представление хранится в виде скомпилированного плана выполнения запроса, то есть в нем в некоторой канонической форме представлены уже все предикаты и сам план выполнения запроса. При преобразовании внешнего запроса производится объединение внешнего запроса с внутренней формой запроса, составляющего основу представления, и строится обобщенная каноническая форма, объединяющая оба запроса. Для этой попой формы проводится анализ и преобразование предикатов. Поэтому при выполнении запроса над представлением будет выполнено не два, а только один запрос, оптимизированный по обобщенным параметрам запроса.

Использование ограничений целостности при анализе запросов. Ограничения целостности связаны с условиями, которые накладываются на значения столбцов таблицы. При выполнении запросов над таблицами условия запросов объединяются специальным образом с условиями ограничений таблицы и полученные обобщенные предикаты уже анализируются. Допустим, что мы ищем в нашей библиотеке читателей с возрастом более 100 лет, но если у нас есть ограничение, заданное для таблицы READERS, которое ограничивает дату рождения наших читателей, так чтобы читатель имел дату рождения в пределах от 17 до 100 лет включительно. Поэтому оптимизатор запроса, сопоставив два эти предиката, может сразу определить, что результатом запроса будет пустое множество.

После оптимизации запрос имеет непроцедурный вид, то есть в нем не определен жесткий порядок выполнения элементарных операций над исходными объектами.

На следующем этане строятся все


На следующем этане строятся все возможные планы выполнения запросов и для каждого из них производятся стоимостные оценки. Оценка планов выполнения запроса основана на анализе текущих объемов данных, хранящихся в отношениях БД, и на статистическом анализе хранимой информации. В большинстве СУБД ведется учет диапазона значений отдельного столбца с указанием процентного содержания для каждого диапазона. Поэтому при построении плана запроса СУБД может оценить объем промежуточных отношений и построить план таким образом, чтобы на наиболее ранних этапах выполнения запроса минимизировать количество строк, включаемых в промежуточные отношения.

Кроме ядра СУБД каждый поставщик обеспечивает специальные инструментальные средства, облегчающие администрирование БД и разработку новых проектов БД и пользовательских приложений для данного сервера. В последнее время практически все утилиты и инструментальные средства имеют развитый графический интерфейс.

Для разработки приложений пользователи могут применять не только инструментальные средства, поставляемые вместе с сервером БД, но и средства сторонних поставщиков. Так, в нашей стране получила большую популярность инструментальная среда Delphi, которая позволяет разрабатывать приложения для различных серверов БД. За рубежом более популярными являются инструментальные системы быстрой разработки приложений (RAF Rapid Application Foundation) продукты компании Advanced Information System, инструментальной среды Power Builder фирмы Power Soft, системы SQL Windows фирмы Gtipta (Taxedo).


Методы синтаксической оптимизации запросов


Методы синтаксической оптимизации запросов связаны с построением некоторой эквивалентной формы, называемой иногда канонической формой, которая требует меньших затрат на выполнение запроса, но дает результат, полностью эквивалентный исходному запросу.

К методам, используемым при синтаксической оптимизации запросов, относятся следующие:

Логические преобразования запросов. Прежде всего это относится к преобразованию предикатов, входящих в условие выборки. Предикаты, содержащие операции сравнения простых значений. Такой предикат имеет вид арифметическое выражение ОС арифметическое выражение, где ОС — операция сравнения, а арифметические выражения левой и правой частей в общем случае содержат имена полей отношений и константы (в языке SQL среди констант могут встречаться и имена переменных объемлющей программы, значения которых становятся известными только'при реальном выполнении запроса).

Канонические представления могут быть различными для предикатов разных типов. Если предикат включает только одно имя поля, то его каноническое представление может, например, иметь вид имя поля ОС константное арифметическое выражение (эта форма предиката — простой предикат селекции — очень полезна при выполнении следующего этапа оптимизации). Если начальное представление предиката имеет вид

(n+12)*R.B OC 100

здесь n — переменная языка, R.B — имя столбца В отношения R, ОС - допустимая операция сравнения.

Каноническим представлением такого предиката может быть

R.В ОС 100/(n+12)

В этом случае мы один раз для заданного значения переменной п вычисляем выражение в скобках и правую часть операции сравнения 100/(n +12), а потом каждую строку можем сравнивать с полученным значением.

Если предикат включает в точности два имени поля разных отношений (или двух разных вхождений одного отношения), то его каноническое представление может иметь вид имя поля ОС арифметическое выражение, где арифметическое выражение в правой части включает только константы и второе имя ноля (это тоже форма, полезная дпя выполнения следующего шага оптимизации, —

предикат соединения; особенно важен случай



предикат соединения; особенно важен случай эквисоединения, когда ОС — это равенство). Если в начальном представлении предикат имеет вид:

12*(Rl.A)-n*(R2.B) ОС m,

то его каноническое представление:

R1.A ОС (m+n*(R2.B)/12

В общем случае желательно приведение предиката к каноническому представлению вида арифметическое выражение ОС константное арифметическое выражение, где выражения правой и левой частей также приведены к каноническому представлению. В дальнейшем можно произвести поиск общих арифметических выражений в разных предикатах запроса. Это оправдано, поскольку при выполнении запроса вычисление арифметических выражений будет производиться при выборке каждого очередного кортежа, то есть потенциально большое число раз.

При приведении предикатов к каноническому представлению можно вычислять константные выражения и избавляться от логических отрицаний.

Еще один класс логических преобразований связан с приведением к каноническому виду логического выражения, задающего условие выборки запроса. Как правило, используются либо дизъюнктивная, либо конъюнктивная нормальные формы. Выбор канонической формы зависит от общей организации оптимизатора.

При приведении логического условия к каноническому представлению можно производить поиск общих предикатов (они могут существовать изначально, могут появиться после приведения предикатов к каноническому виду или в процессе нормализации логического условия) и упрощать логическое выражение за счет, например, выявления конъюнкции взаимно противоречащих предикатов.

Преобразования запросов с изменением порядка реляционных операций. В традиционных оптимизаторах распространены логические преобразования, связанные с изменением порядка выполнения реляционных операций.

Например, имеем следующий запрос:

R1 NATURAL JOIN R2

WHERE R1.A ОС a AND

R2.B С b

Здесь а и b некоторые константы, которые ограничивают значение атрибутов отношений R1 и R2.

Если мы его рассмотрим в терминах реляционной алгебры, то это естественное соединение отношений R1 и R2, в которых заданы внутренние ограничения на кортежи каждого отношения.

Для уменьшения числа соединяемых кортежей



Для уменьшения числа соединяемых кортежей резоннее сначала произвести операции выборки на каждом отношении и только после этого перейти в операции естественного соединения.

предикат соединения; особенно важен случай зквисоединения, когда ОС — это равенство). Если в начальном представлении предикат имеет вид:

12*(Rl.A)-n*(R2.B) ОС m,

то его каноническое представление:

R1.A ОС (m+n*(R2.B)/12

В общем случае желательно приведение предиката к каноническому представлению вида арифметическое выражение ОС константное арифметическое выражение, где выражения правой и левой частей также приведены к каноническому представлению. В дальнейшем можно произвести поиск общих арифметических выражений в разных предикатах запроса. Это оправдано, поскольку при выполнении запроса вычисление арифметических выражений будет производиться при выборке каждого очередного кортежа, то есть потенциально большое число раз.

При приведении предикатов к каноническому представлению можно вычислять константные выражения и избавляться от логических отрицаний.

Еще один класс логических преобразовании связан с приведением к каноническому виду логического выражения, задающего условие выборки запроса. Как правило, используются либо дизъюнктивная, либо конъюнктивная нормальные формы. Выбор канонической формы зависит от общей организации оптимизатора.

При приведении логического условия к каноническому представлению можно производить поиск общих предикатов (они могут существовать изначально, могут появиться после приведения предикатов к каноническому виду или в процессе нормализации логического условия) и упрощать логическое выражение за счет, например, выявления конъюнкции взаимно противоречащих предикатов.

Преобразования запросов с изменением порядка реляционных операций. В традиционных оптимизаторах распространены логические преобразования, связанные с изменением порядка выполнения реляционных операций.

Например, имеем следующий запрос:

Rl NATURAL JOIN R2 WHERE R1.A ОС a AND R2.B С b


b некоторые константы, которые ограничивают


Здесь а и b некоторые константы, которые ограничивают значение атрибутов отношений R1 и R2.

Если мы его рассмотрим в терминах реляционной алгебры, то это естественное соединение отношений R1 и R2, в которых заданы внутренние ограничения на кортежи каждого отношения.

Для уменьшения числа соединяемых кортежей резоннее сначала произвести операции выборки на каждом отношении и только после этого перейти в операции естественного соединения.

Поэтому данный запрос будет эквивалентен следующей последовательности операций реляционной алгебры:

R3 =.R1[R1.A ОС а] R4 = R2[R2.B С b] R5 = R3*[ ]*R4

Хотя немногие реляционные системы имеют языки запросов, основанные в чистом виде на реляционной алгебре, правила преобразований алгебраических выражений могут быть полезны и в других случаях. Довольно часто реляционная алгебра используется в качестве основы внутреннего представления запроса. Естественно, что после этого можно выполнять и алгебраические преобразования.

В частности, существуют подходы, связанные с преобразованием запросов на языке SQL к алгебраической форме. Особенно важно то, что реляционная алгебра более проста, чем язык SQL. Преобразование запроса к алгебраической форме упрощает дальнейшие действия оптимизатора по выборке оптимальных планов. Вообще говоря, развитый оптимизатор запросов системы, ориентированной на SQL, должен выявить все возможные планы выполнения любого запроса, но «пространство поиска» этих планов в общем случае очень велико; в каждом конкретном оптимизаторе используются свои эвристики для сокращения пространства поиска. Некоторые, возможно, наиболее оптимальные планы никогда не будут рассматриваться. Разумное преобразование запроса на SQL к алгебраическому представлению сокращает пространство поиска планов выполнения запроса с гарантией того, что оптимальные планы потеряны не будут.

Приведение запросов с вложенными подзапросами к запросам с соединениями. Основным отличием языка SQL от языка реляционной алгебры является возможность использовать в логическом условии выборки предикаты, содержащие вложенные подзапросы.

Глубина вложенности не ограничивается языком,


Глубина вложенности не ограничивается языком, то есть, вообще говоря, может быть произвольной. Предикаты с вложенными подзапросами при наличии общего синтаксиса могут обладать весьма различной семантикой. Единственным общим для всех возможных се-мантик вложенных подзапросов алгоритмом выполнения запроса является вычисление вложенного подзапроса всякий раз при вычислении значения предиката. Поэтому естественно стремиться к такому преобразованию запроса, содержащего предикаты со вложенными подзапросами, которое сделает семантику подзапроса более явной, предоставив тем самым в дальнейшем оптимизатору возможность выбрать способ выполнения запроса, наиболее точно соответствующий семантике подзапроса.

Каноническим представлением запроса на п отношениях называется запрос, содержащий n-1 предикат соединения и не содержащий предикатов с вложенными подзапросами. Фактически каноническая форма — это алгебраическое представление запроса.

Например, запрос с вложенным подзапросом:

(SELECT Rl.A

FROM Rl

WHERE Rl.B IN

(SELECT R2.B FROM R2 WHERE Rl.C = R2.D)

)

эквивалентен

(SELECT Rl.A

FROM Rl. R2

WHERE Rl.A = R2.B AND Rl.C = R2.D)

Второй запрос:

(SELECT Rl.A FROM Rl WHERE Rl.K =

(SELECT AVG (R2.B) FROM R2 WHERE Rl.C = R2.D)

или

(SELECT Rl.A FROM Rl. R3

WHERE Rl.C = R3.D AND Rl.K = R3.L)

R3 = SELECT R2.D, L AVG (R2.B)

FROM R2

GROUP BY R2.D

При использовании подобного подхода в оптимизаторе запросов не обязательно производить формальные преобразования запросов. Оптимизатор должен в большей степени использовать семантику обрабатываемого запроса, а каким образом она будет распознаваться — это вопрос техники.

Заметим, что в кратко описанном нами подходе имеются некоторые тонкие семантические некорректности. Известны исправленные методы, но они слишком сложны технически, чтобы рассматривать их в данном пособии.