нф (первая нормальная форма)



1НФ (Первая Нормальная Форма)

Понятие первой нормальной формы уже обсуждалось в главе 2. Первая нормальная форма (1НФ) - это обычное отношение. Согласно нашему определению отношений, любое отношение автоматически уже находится в 1НФ. Напомним кратко свойства отношений (это и будут свойства 1НФ): В отношении нет одинаковых кортежей. Кортежи не упорядочены. Атрибуты не упорядочены и различаются по наименованию. Все значения атрибутов атомарны.

В ходе логического моделирования на первом шаге предложено хранить данные в одном отношении, имеющем следующие атрибуты:

СОТРУДНИКИ_ОТДЕЛЫ_ПРОЕКТЫ (Н_СОТР, ФАМ, Н_ОТД, ТЕЛ, Н_ПРО, ПРОЕКТ, Н_ЗАДАН)

где

Н_СОТР - табельный номер сотрудника

ФАМ - фамилия сотрудника

Н_ОТД - номер отдела, в котором числится сотрудник

ТЕЛ - телефон сотрудника

Н_ПРО - номер проекта, над которым работает сотрудник

ПРОЕКТ - наименование проекта, над которым работает сотрудник

Н_ЗАДАН - номер задания, над которым работает сотрудник

Т.к. каждый сотрудник в каждом проекте выполняет ровно одно задание, то в качестве потенциального ключа отношения необходимо взять пару атрибутов {Н_СОТР, Н_ПРО}.

В текущий момент состояние предметной области отражается следующими фактами: Сотрудник Иванов, работающий в 1 отделе, выполняет в первом проекте "Космос" задание 1 и во втором проекте "Климат" задание 1. Сотрудник Петров, работающий в 1 отделе, выполняет в первом проекте "Космос" задание 2. Сотрудник Сидоров, работающий во 2 отделе, выполняет в первом проекте "Космос" задание 3 и во втором проекте "Климат" задание 2.

Это состояние отражается в таблице (курсивом выделены ключевые атрибуты):




нф (четвертая нормальная форма)



4НФ (Четвертая Нормальная Форма)

Рассмотрим следующий пример. Пусть требуется учитывать данные об абитуриентах, поступающих в ВУЗ. При анализе предметной области были выделены следующие требования: Каждый абитуриент имеет право сдавать экзамены на несколько факультетов одновременно. Каждый факультет имеет свой список сдаваемых предметов. Один и тот же предмет может сдаваться на нескольких факультетах. Абитуриент обязан сдавать все предметы, указанные для факультета, на который он поступает, несмотря на то, что он, может быть, уже сдавал такие же предметы на другом факультете.

Предположим, что нам требуется хранить данные о том, какие предметы должен сдавать каждый абитуриент. Попытаемся хранить данные в одном отношении "Абитуриенты-Факультеты-Предметы":

нф (пятая нормальная форма)



5НФ (Пятая Нормальная Форма)

Функциональные и многозначные зависимости позволяют произвести декомпозицию исходного отношения без потерь на две проекции. Можно, однако, привести примеры отношений, которые нельзя декомпозировать без потерь ни на какие две проекции.



Адекватность базы данных предметной области



Адекватность базы данных предметной области

База данных должна адекватно отражать предметную область. Это означает, что должны выполняться следующие условия: Состояние базы данных в каждый момент времени должно соответствовать состоянию предметной области. Изменение состояния предметной области должно приводить к соответствующему изменению состояния базы данных Ограничения предметной области, отраженные в модели предметной области, должны некоторым образом отражаться и учитываться базе данных.



Алгоритм нормализации (приведение к 3нф)



Алгоритм нормализации (приведение к 3НФ)

Итак, алгоритм нормализации (т.е. алгоритм приведения отношений к 3НФ) описывается следующим образом.

Анализ декомпозированных отношений



Анализ декомпозированных отношений

Отношения, полученные в результате декомпозиции, находятся в 2НФ. Действительно, отношения СОТРУДНИКИ_ОТДЕЛЫ и ПРОЕКТЫ имеют простые ключи, следовательно автоматически находятся в 2НФ, отношение ЗАДАНИЯ имеет сложный ключ, но единственный неключевой атрибут Н_ЗАДАН функционально зависит от всего ключа {Н_СОТР, Н_ПРО}.

Часть аномалий обновления устранена. Так, данные о сотрудниках и проектах теперь хранятся в различных отношениях, поэтому при появлении сотрудников, не участвующих ни в одном проекте просто добавляются кортежи в отношение СОТРУДНИКИ_ОТДЕЛЫ. Точно также, при появлении проекта, над которым не работает ни один сотрудник, просто вставляется кортеж в отношение ПРОЕКТЫ.

Фамилии сотрудников и наименования проектов теперь хранятся без избыточности. Если сотрудник сменит фамилию или проект сменит наименование, то такое обновление будет произведено в одном месте.

Если по проекту временно прекращены работы, но требуется, чтобы сам проект сохранился, то для этого проекта удаляются соответствующие кортежи в отношении ЗАДАНИЯ, а данные о самом проекте и данные о сотрудниках, участвовавших в проекте, остаются в отношениях ПРОЕКТЫ и СОТРУДНИКИ_ОТДЕЛЫ.

Тем не менее, часть аномалий разрешить не удалось.

Аномалии обновления



Аномалии обновления

Даже одного взгляда на таблицу отношения СОТРУДНИКИ_ОТДЕЛЫ_ПРОЕКТЫ достаточно, чтобы увидеть, что данные хранятся в ней с большой избыточностью. Во многих строках повторяются фамилии сотрудников, номера телефонов, наименования проектов. Кроме того, в данном отношении хранятся вместе независимые друг от друга данные - и данные о сотрудниках, и об отделах, и о проектах, и о работах по проектам. Пока никаких действий с отношением не производится, это не страшно. Но как только состояние предметной области изменяется, то, при попытках соответствующим образом изменить состояние базы данных, возникает большое количество проблем.

Исторически эти проблемы получили название аномалии обновления. Попытки дать строгое понятие аномалии в базе данных не являются вполне удовлетворительными [51, 7]. В данных работах аномалии определены как противоречие между моделью предметной области и физической моделью данных, поддерживаемых средствами конкретной СУБД. "Аномалии возникают в том случае, когда наши знания о предметной области оказываются, по каким-то причинам, невыразимыми в схеме БД или входящими в противоречие с ней" [7]. Мы придерживаемся другой точки зрения, заключающейся в том, что аномалий в смысле определений упомянутых авторов нет, а есть либо неадекватность модели данных предметной области, либо некоторые дополнительные трудности в реализации ограничений предметной области средствами СУБД. Более глубокое обсуждение проблемы строгого определения понятия аномалий выходит за пределы данной работы.

Таким образом, мы будем придерживаться интуитивного понятия аномалии как неадекватности модели данных предметной области, (что говорит на самом деле о том, что логическая модель данных попросту неверна!) или как необходимости дополнительных усилий для реализации всех ограничений определенных в предметной области (дополнительный программный код в виде триггеров или хранимых процедур).

Т.к. аномалии проявляют себя при выполнении операций, изменяющих состояние базы данных, то различают следующие виды аномалий: Аномалии вставки (INSERT) Аномалии обновления (UPDATE) Аномалии удаления (DELETE)

В отношении СОТРУДНИКИ_ОТДЕЛЫ_ПРОЕКТЫ можно привести примеры следующих аномалий:

Аномалии обновления (update)



Аномалии обновления (UPDATE)

Фамилии сотрудников, наименования проектов, номера телефонов повторяются во многих кортежах отношения. Поэтому если сотрудник меняет фамилию, или проект меняет наименование, или меняется номер телефона, то такие изменения необходимо одновременно выполнить во всех местах, где эта фамилия, наименование или номер телефона встречаются, иначе отношение станет некорректным (например, один и тот же проект в разных кортежах будет называться по-разному). Таким образом, обновление базы данных одним действием реализовать невозможно. Для поддержания отношения в целостном состоянии необходимо написать триггер, который при обновлении одной записи корректно исправлял бы данные и в других местах.

Причина аномалии - избыточность данных, также порожденная тем, что в одном отношении хранится разнородная информация.

Вывод - увеличивается сложность разработки базы данных. База данных, основанная на такой модели, будет работать правильно только при наличии дополнительного программного кода в виде триггеров.

Аномалии удаления (delete)



Аномалии удаления (DELETE)

При удалении некоторых данных может произойти потеря другой информации. Например, если закрыть проект "Космос" и удалить все строки, в которых он встречается, то будут потеряны все данные о сотруднике Петрове. Если удалить сотрудника Сидорова, то будет потеряна информация о том, что в отделе номер 2 находится телефон 33-22-11. Если по проекту временно прекращены работы, то при удалении данных о работах по этому проекту будут удалены и данные о самом проекте (наименование проекта). При этом если был сотрудник, который работал только над этим проектом, то будут потеряны и данные об этом сотруднике.

Причина аномалии - хранение в одном отношении разнородной информации (и о сотрудниках, и о проектах, и о работах по проекту).

Вывод - логическая модель данных неадекватна модели предметной области. База данных, основанная на такой модели, будет работать неправильно.

Аномалии вставки (insert)



Аномалии вставки (INSERT)

В отношение СОТРУДНИКИ_ОТДЕЛЫ_ПРОЕКТЫ нельзя вставить данные о сотруднике, который пока не участвует ни в одном проекте. Действительно, если, например, во втором отделе появляется новый сотрудник, скажем, Пушников, и он пока не участвует ни в одном проекте, то мы должны вставить в отношение кортеж (4, Пушников, 2, 33-22-11, null, null, null). Это сделать невозможно, т.к. атрибут Н_ПРО (номер проекта) входит в состав потенциального ключа, и, следовательно, не может содержать null-значений.

Точно также нельзя вставить данные о проекте, над которым пока не работает ни один сотрудник.

Причина аномалии - хранение в одном отношении разнородной информации (и о сотрудниках, и о проектах, и о работах по проекту).

Вывод - логическая модель данных неадекватна модели предметной области. База данных, основанная на такой модели, будет работать неправильно.

Блокировки



Блокировки

Основная идея блокировок заключается в том, что если для выполнения некоторой транзакции необходимо, чтобы некоторый объект не изменялся без ведома этой транзакции, то этот объект должен быть заблокирован, т.е. доступ к этому объекту со стороны других транзакций ограничивается на время выполнения транзакции, вызвавшей блокировку.

Различают два типа блокировок: Монопольные блокировки (X-блокировки, X-locks - eXclusive locks) - блокировки без взаимного доступа (блокировка записи). Разделяемые блокировки (S-блокировки, S-locks - Shared locks) - блокировки с взаимным доступом (блокировка чтения).

Если транзакция A блокирует объект при помощи X-блокировки, то всякий доступ к этому объекту со стороны других транзакций отвергается.

Если транзакция A блокирует объект при помощи S-блокировки, то запросы со стороны других транзакций на X-блокировку этого объекта будут отвергнуты, запросы со стороны других транзакций на S-блокировку этого объекта будут приняты.

Правила взаимного доступа к заблокированным объектам можно представить в виде следующей матрицы совместимости блокировок. Если транзакция A наложила блокировку на некоторый объект, а транзакция B после этого пытается наложить блокировку на этот же объект, то успешность блокирования транзакцией B объекта описывается таблицей:

Bnf-нотация



BNF-нотация

Опишем синтаксис оператора выборки данных (оператора SELECT) более точно. При описании синтаксиса операторов обычно используются условные обозначения, известные как стандартные формы Бэкуса-Наура (BNF).

В BNF обозначениях используются следующие элементы: Символ "::=" означает равенство по определению. Слева от знака стоит определяемое понятие, справа - собственно определение понятия. Ключевые слова записываются прописными буквами. Они зарезервированы и составляют часть оператора. Метки-заполнители конкретных значений элементов и переменных записываются курсивом. Необязательные элементы оператора заключены в квадратные скобки []. Вертикальная черта | указывает на то, что все предшествующие ей элементы списка являются необязательными и могут быть заменены любым другим элементом списка после этой черты. Фигурные скобки {} указывают на то, что все находящееся внутри них является единым целым. Троеточие "…" означает, что предшествующая часть оператора может быть повторена любое количество раз. Многоточие, внутри которого находится запятая ".,.." указывает, что предшествующая часть оператора, состоящая из нескольких элементов, разделенных запятыми, может иметь произвольное число повторений. Запятую нельзя ставить после последнего элемента. Замечание: данное соглашение не входит в стандарт BNF, но позволяет более точно описать синтаксис операторов SQL. Круглые скобки являются элементом оператора.

Целостность сущностей



Целостность сущностей

Т.к. потенциальные ключи фактически служат идентификаторами объектов предметной области (т.е. предназначены для различения объектов), то значения этих идентификаторов не могут содержать неизвестные значения. Действительно, если бы идентификаторы могли содержать null-значения, то мы не могли бы дать ответ "да" или "нет" на вопрос, совпадают или нет два идентификатора.

Это определяет следующее правило целостности сущностей:

Правило целостности сущностей. Атрибуты, входящие в состав некоторого потенциального ключа не могут принимать null-значений.

Целостность внешних ключей



Целостность внешних ключей

Т.к. внешние ключи фактически служат ссылками на кортежи в другом (или в том же самом) отношении, то эти ссылки не должны указывать на несуществующие объекты. Это определяет следующее правило целостности внешних ключей:

Правило целостности внешних ключей. Внешние ключи не должны быть несогласованными, т.е. для каждого значения внешнего ключа должно существовать соответствующее значение первичного ключа в родительском отношении.

Декартово произведение множеств



Декартово произведение множеств

Одним из способов конструирования новых объектов из уже имеющихся множеств является декартово произведение множеств.

Пусть Декартово произведение множеств - множества. Выражение вида Декартово произведение множеств и упорядоченной парой. Равенство вида Декартово произведение множеств и упорядоченную n-ку Декартово произведение множеств. Упорядоченные n-ки иначе называют наборы или кортежи.

Delete - удаление строк в таблице



DELETE - удаление строк в таблице



Для дочернего отношения



Для дочернего отношения

Вставка кортежа в дочернее отношение. Нельзя вставить кортеж в дочернее отношение, если вставляемое значение внешнего ключа некорректно. Вставка кортежа в дочернее отношение привести к нарушению ссылочной целостности.

Обновление кортежа в дочернем отношении. При обновлении кортежа в дочернем отношении можно попытаться некорректно изменить значение внешнего ключа. Обновление кортежа в дочернем отношении может привести к нарушению ссылочной целостности.

Удаление кортежа в дочернем отношении. При удалении кортежа в дочернем отношении ссылочная целостность не нарушается.

Таким образом, ссылочная целостность в принципе может быть нарушена при выполнении одной из четырех операций: Обновление кортежа в родительском отношении. Удаление кортежа в родительском отношении. Вставка кортежа в дочернее отношение. Обновление кортежа в дочернем отношении.

Для родительского отношения



Для родительского отношения

Вставка кортежа в родительском отношении. При вставке кортежа в родительское отношение возникает новое значение потенциального ключа. Т.к. допустимо существование кортежей в родительском отношении, на которые нет ссылок из дочернего отношения, то вставка кортежей в родительское отношение не нарушает ссылочной целостности.

Обновление кортежа в родительском отношении. При обновлении кортежа в родительском отношении может измениться значение потенциального ключа. Если есть кортежи в дочернем отношении, ссылающиеся на обновляемый кортеж, то значения их внешних ключей станут некорректными. Обновление кортежа в родительском отношении может привести к нарушению ссылочной целостности, если это обновление затрагивает значение потенциального ключа.

Удаление кортежа в родительском отношении. При удалении кортежа в родительском отношении удаляется значение потенциального ключа. Если есть кортежи в дочернем отношении, ссылающиеся на удаляемый кортеж, то значения их внешних ключей станут некорректными. Удаление кортежей в родительском отношении может привести к нарушению ссылочной целостности.

Домены



Домены

В реляционной модели данных с понятием тип данных тесно связано понятие домена, которое можно считать уточнением типа данных.

Домен - это семантическое понятие. Домен можно рассматривать как подмножество значений некоторого типа данных имеющих определенный смысл. Домен характеризуется следующими свойствами: Домен имеет уникальное имя (в пределах базы данных). Домен определен на некотором простом типе данных или на другом домене. Домен может иметь некоторое логическое условие, позволяющее описать подмножество данных, допустимых для данного домена. Домен несет определенную смысловую нагрузку.

Например, домен

Если тип данных можно считать множеством всех возможных значений данного типа, то домен напоминает подмножество в этом множестве.

Отличие домена от понятия подмножества состоит именно в том, что домен отражает семантику, определенную предметной областью. Может быть несколько доменов, совпадающих как подмножества, но несущие различный смысл. Например, домены "Вес детали" и "Имеющееся количество" можно одинаково описать как множество неотрицательных целых чисел, но смысл этих доменов будет различным, и это будут различные домены.

Основное значение доменов состоит в том, что домены ограничивают сравнения. Некорректно, с логической точки зрения, сравнивать значения из различных доменов, даже если они имеют одинаковый тип. В этом проявляется смысловое ограничение доменов. Синтаксически правильный запрос "выдать список всех деталей, у которых вес детали больше имеющегося количества" не соответствует смыслу понятий "количество" и "вес".

Замечание. Понятие домена помогает правильно моделировать предметную область. При работе с реальной системой в принципе возможна ситуация когда требуется ответить на запрос, приведенный выше. Система даст ответ, но, вероятно, он будет бессмысленным.

Замечание. Не все домены обладают логическим условием, ограничивающим возможные значения домена. В таком случае множество возможных значений домена совпадает с множеством возможных значений типа данных.

Замечание. Не всегда очевидно, как задать логическое условие, ограничивающее возможные значения домена. Я буду благодарен тому, кто приведет мне условие на строковый тип данных, задающий домен "Фамилия сотрудника". Ясно, что строки, являющиеся фамилиями не должны начинаться с цифр, служебных символов, с мягкого знака и т.д. Но вот является ли допустимой фамилия "Ггггггыыыыы"? Почему бы нет? Очевидно, нет! А может кто-то назло так себя назовет. Трудности такого рода возникают потому, что смысл реальных явлений далеко не всегда можно формально описать. Просто мы, как все люди, интуитивно понимаем, что такое фамилия, но никто не может дать такое формальное определение, которое отличало бы фамилии от строк, фамилиями не являющимися. Выход из этой ситуации простой - положиться на разум сотрудника, вводящего фамилии в компьютер.

Экви-соединение



Экви-соединение

Наиболее важным частным случаем Экви-соединение есть просто равенство.

Синтаксис экви-соединения:



Этапы разработки базы данных



Этапы разработки базы данных

Целью разработки любой базы данных является хранение и использование информации о какой-либо предметной области. Для реализации этой цели имеются следующие инструменты: Реляционная модель данных - удобный способ представления данных предметной области. Язык SQL - универсальный способ манипулирования такими данными.

Однако очевидно, что для одной и той же предметной области реляционные отношения можно спроектировать множеством различных способов. Например, можно спроектировать несколько отношений с большим количеством атрибутов, или наоборот, разнести все атрибуты по большому числу мелких отношений. Как определить, по каким признакам нужно помещать атрибуты в те или иные отношения?

В данной главе рассматриваются способы "хорошего" или "правильного" проектирования реляционных отношений. Сначала мы обсудим, что значит "хорошие" или "правильные" модели данных. Потом будут введены понятия первой, второй и третьей нормальных форм отношений (1НФ, 2НФ, 3НФ) и показано, что "хорошими" являются отношения в третьей нормальной форме.

При разработке базы данных обычно выделяется несколько уровней моделирования, при помощи которых происходит переход от предметной области к конкретной реализации базы данных средствами конкретной СУБД. Можно выделить следующие уровни: Сама предметная область Модель предметной области Логическая модель данных Физическая модель данных Собственно база данных и приложения

Предметная область - это часть реального мира, данные о которой мы хотим отразить в базе данных. Например, в качестве предметной области можно выбрать бухгалтерию какого-либо предприятия, отдел кадров, банк, магазин и т.д. Предметная область бесконечна и содержит как существенно важные понятия и данные, так и малозначащие или вообще не значащие данные. Так, если в качестве предметной области выбрать учет товаров на складе, то понятия "накладная" и "счет-фактура" являются существенно важными понятиями, а то, что сотрудница, принимающая накладные, имеет двоих детей - это для учета товаров неважно. Однако, с точки зрения отдела кадров данные о наличии детей являются существенно важными. Таким образом, важность данных зависит от выбора предметной области.

Модель предметной области. Модель предметной области - это наши знания о предметной области. Знания могут быть как в виде неформальных знаний в мозгу эксперта, так и выражены формально при помощи каких-либо средств. В качестве таких средств могут выступать текстовые описания предметной области, наборы должностных инструкций, правила ведения дел в компании и т.п. Опыт показывает, что текстовый способ представления модели предметной области крайне неэффективен. Гораздо более информативными и полезными при разработке баз данных являются описания предметной области, выполненные при помощи специализированных графических нотаций. Имеется большое количество методик описания предметной области. Из наиболее известных можно назвать методику структурного анализа SADT и основанную на нем IDEF0, диаграммы потоков данных Гейна-Сарсона, методику объектно-ориентированного анализа UML, и др. Модель предметной области описывает скорее процессы, происходящие в предметной области и данные, используемые этими процессами. От того, насколько правильно смоделирована предметная область, зависит успех дальнейшей разработки приложений.

Логическая модель данных. На следующем, более низком уровне находится логическая модель данных предметной области. Логическая модель описывает понятия предметной области, их взаимосвязь, а также ограничения на данные, налагаемые предметной областью.

Фиктивные элементы (фантомы)



Фиктивные элементы (фантомы)

Эффект фиктивных элементов несколько отличается от предыдущих транзакций тем, что здесь за один шаг выполняется достаточно много операций - чтение одновременно нескольких строк, удовлетворяющих некоторому условию.

Транзакция A дважды выполняет выборку строк с одним и тем же условием. Между выборками вклинивается транзакция B, которая добавляет новую строку, удовлетворяющую условию отбора.

Фиктивные элементы (фантомы)

Транзакция A дважды выполняет выборку строк с одним и тем же условием. Между выборками вклинивается транзакция B, которая добавляет новую строку, удовлетворяющую условию отбора.


Функциональные зависимости



Функциональные зависимости

Отношение СОТРУДНИКИ_ОТДЕЛЫ_ПРОЕКТЫ находится в 1НФ, при этом, как было показано выше, логическая модель данных не адекватна модели предметной области. Таким образом, первой нормальной формы недостаточно для правильного моделирования данных.

Функциональные зависимости отношений и математическое понятие функциональной зависимости



Функциональные зависимости отношений и математическое понятие функциональной зависимости

Функциональная зависимость атрибутов отношения напоминает понятие функциональной зависимости в математике. Но это не одно и то же. Для сравнения напомним математическое понятие функциональной зависимости:

Целостность реляционных данных



Глава 3. Целостность реляционных данных

Во второй части реляционной модели данных определяются два ограничения, которые должны выполняться в любой реляционной базе данных. Это: Целостность сущностей. Целостность внешних ключей.

Прежде, чем говорить о целостности сущностей, опишем использование null-значений в реляционных базах данных.

Элементы языка sql



Глава 5. Элементы языка SQL

В данной главе рассматриваются элементы языка SQL (Structured Query Language). Текущая версия стандарта языка SQL принята в 1992 г. (Официальное название стандарта - Международный стандарт языка баз данных SQL (1992) (International Standart Database Language SQL), неофициальное название - SQL/92, или SQL-92, или SQL2). Документ, описывающий стандарт, содержит более 600 страниц. Мы дадим только некоторые понятия языка.

Язык SQL стал фактически стандартным языком доступа к базам данных. Все СУБД, претендующие на название "реляционные", реализуют тот или иной диалект SQL. Многие нереляционные системы также имеют в настоящее время средства доступа к реляционным данным. Целью стандартизации является переносимость приложений между различными СУБД.

Нужно заметить, что в настоящее время, ни одна система не реализует стандарт SQL в полном объеме. Кроме того, во всех диалектах языка имеются возможности, не являющиеся стандартными. Таким образом, можно сказать, что каждый диалект - это надмножество некоторого подмножества стандарта SQL. Это затрудняет переносимость приложений, разработанных для одних СУБД в другие СУБД.

Язык SQL оперирует терминами, несколько отличающимися от терминов реляционной теории, например, вместо "отношений" используются "таблицы", вместо "кортежей" - "строки", вместо "атрибутов" - "колонки" или "столбцы".

Стандарт языка SQL, хотя и основан на реляционной теории, но во многих местах отходит он нее. Например, отношение в реляционной модели данных не допускает наличия одинаковых кортежей, а таблицы в терминологии SQL могут иметь одинаковые строки. Имеются и другие отличия.

Язык SQL является реляционно полным. Это означает, что любой оператор реляционной алгебры может быть выражен подходящим оператором SQL.

Нормальные формы более высоких порядков



Глава 7. Нормальные формы более высоких порядков

В предыдущей главе были рассмотрены нормальные формы вплоть до третьей нормальной формы (3НФ). В большинстве случаев этого вполне достаточно, чтобы разрабатывать вполне работоспособные базы данных. В данной главе рассматриваются нормальные формы более высоких порядков, а именно, нормальная форма Бойса-Кодда (НФБК), четвертая нормальная форма (4НФ), пятая нормальная форма (5НФ).

Элементы модели "сущность-связь"



Глава 8. Элементы модели "сущность-связь"

Моделирование структуры базы данных при помощи алгоритма нормализации, описанного в предыдущих главах, имеет серьезные недостатки: Первоначальное размещение всех атрибутов в одном отношении является очень неестественной операцией. Интуитивно разработчик сразу проектирует несколько отношений в соответствии с обнаруженными сущностями. Даже если совершить насилие над собой и создать одно или несколько отношений, включив в них все предполагаемые атрибуты, то совершенно неясен смысл полученного отношения. Невозможно сразу определить полный список атрибутов. Пользователи имеют привычку называть разными именами одни и те же вещи или наоборот, называть одними именами разные вещи. Для проведения процедуры нормализации необходимо выделить зависимости атрибутов, что тоже очень нелегко, т.к. необходимо явно выписать все зависимости, даже те, которые являются очевидными.

В реальном проектировании структуры базы данных применяются другой метод - так называемое, семантическое моделирование. Семантическое моделирование представляет собой моделирование структуры данных, опираясь на смысл этих данных. В качестве инструмента семантического моделирования используются различные варианты диаграмм сущность-связь (ER - Entity-Relationship).

Первый вариант модели сущность-связь был предложен в 1976 г. Питером Пин-Шэн Ченом [37]. В дальнейшем многими авторами были разработаны свои варианты подобных моделей (нотация Мартина, нотация IDEF1X, нотация Баркера и др.). Кроме того, различные программные средства, реализующие одну и ту же нотацию, могут отличаться своими возможностями. По сути, все варианты диаграмм сущность-связь исходят из одной идеи - рисунок всегда нагляднее текстового описания. Все такие диаграммы используют графическое изображение сущностей предметной области, их свойств (атрибутов), и взаимосвязей между сущностями.

Мы опишем работу с ER-диаграммами близко к нотации Баркера, как довольно легкой в понимании основных идей. Данная глава является скорее иллюстрацией методов семантического моделирования, чем полноценным введением в эту область.

Транзакции и целостность баз данных



Глава 9. Транзакции и целостность баз данных

В данной и в последующих главах изучается фундаментальное понятие транзакции. Это понятие не входит в реляционную модель данных, т.к. транзакции рассматриваются не только в реляционных СУБД, но и в СУБД других типов, а также и в других типах информационных систем.

Транзакция - это неделимая, с точки зрения воздействия на СУБД, последовательность операций манипулирования данными. Для пользователя транзакция выполняется по принципу "все или ничего", т.е. либо транзакция выполняется целиком и переводит базу данных из одного целостного состояния в другое целостное состояние, либо, если по каким-либо причинам, одно из действий транзакции невыполнимо, или произошло какое-либо нарушение работы системы, база данных возвращается в исходное состояние, которое было до начала транзакции (происходит откат транзакции). С этой точки зрения, транзакции важны как в многопользовательских, так и в однопользовательских системах. В однопользовательских системах транзакции - это логические единицы работы, после выполнения которых база данных остается в целостном состоянии. Транзакции также являются единицами восстановления данных после сбоев - восстанавливаясь, система ликвидирует следы транзакций, не успевших успешно завершиться в результате программного или аппаратного сбоя. Эти два свойства транзакций определяют атомарность (неделимость) транзакции. В многопользовательских системах, кроме того, транзакции служат для обеспечения изолированной работы отдельных пользователей - пользователям, одновременно работающим с одной базой данных, кажется, что они работают как бы в однопользовательской системе и не мешают друг другу.

Транзакции и параллелизм



Глава 10. Транзакции и параллелизм

В данной главе изучаются возможности параллельного выполнения транзакций несколькими пользователями, т.е. свойство (И) - изолированность транзакций.

Современные СУБД являются многопользовательскими системами, т.е. допускают параллельную одновременную работу большого количества пользователей. При этом пользователи не должны мешать друг другу. Т.к. логической единицей работы для пользователя является транзакция, то работа СУБД должна быть организована так, чтобы у пользователя складывалось впечатление, что их транзакции выполняются независимо от транзакций других пользователей.

Простейший и очевидный способ обеспечить такую иллюзию у пользователя состоит в том, чтобы все поступающие транзакции выстраивать в единую очередь и выполнять строго по очереди. Такой способ не годится по очевидным причинам - теряется преимущество параллельной работы. Таким образом, транзакции необходимо выполнять одновременно, но так, чтобы результат был бы такой же, как если бы транзакции выполнялись по очереди. Трудность состоит в том, что если не предпринимать никаких специальных мер, то данные измененные одним пользователем могут быть изменены транзакцией другого пользователя раньше, чем закончится транзакция первого пользователя. В результате, в конце транзакции первый пользователь увидит не результаты своей работы, а неизвестно что.

Одним из способов (не единственным) обеспечить независимую параллельную работу нескольких транзакций является метод блокировок.

Транзакции и восстановление данных



Глава 11. Транзакции и восстановление данных

В данной главе изучаются возможности восстановления данных после сбоев системы, т.е. свойство (Д) - долговечность транзакций.

Главное требование долговечности данных транзакций состоит в том, что данные зафиксированных транзакций должны сохраняться в системе, даже если в следующий момент произойдет сбой системы. Казалось бы, самый простой способ обеспечить такую гарантию - это во время каждой операции сразу записывать все изменения на дисковые носители. Такой способ не является удовлетворительным, т.к. имеется существенное различие в скорости работы с оперативной и с внешней памятью. Единственный способ достичь приемлемой скорости работы состоит в буферизации страниц базы данных в оперативной памяти. Это означает, что данные попадают во внешнюю долговременную память не сразу после внесения изменений, а через некоторое (достаточно большое) время. Тем не менее, что-что во внешней памяти должно оставаться, т.к. иначе неоткуда получить информацию для восстановления.

Требование атомарности транзакций утверждает, что не законченные или откатившиеся транзакции не должны оставлять следов в базе данных. Это означает, что данные должны храниться в базе данных с избыточностью, позволяющей иметь информацию, по которой восстанавливается состояние базы данных на момент начала неудачной транзакции. Такую избыточность обычно обеспечивает журнал транзакций. Журнал транзакций содержит детали всех операций модификации данных в базе данных, в частности, старое и новое значение модифицированного объекта, системный номер транзакции, модифицировавшей объект и другая информация.

Индивидуальный откат транзакции



Индивидуальный откат транзакции

Для того чтобы можно было выполнить по журналу транзакций индивидуальный откат транзакции, все записи в журнале от данной транзакции связываются в обратный список. Началом списка для не закончившихся транзакций является запись о последнем изменении базы данных, произведенном данной транзакцией. Для закончившихся транзакций (индивидуальные откаты которых уже невозможны) началом списка является запись о конце транзакции, которая обязательно вытолкнута во внешнюю память журнала. Концом списка всегда служит первая запись об изменении базы данных, произведенном данной транзакцией. В каждой записи имеется уникальный системный номер транзакции, чтобы можно было восстановить прямой список записей об изменениях базы данных данной транзакцией.

Индивидуальный откат транзакции выполняется следующим образом: Просматривается список записей, сделанных данной транзакцией в журнале транзакций (от последнего изменения к первому изменению). Выбирается очередная запись из списка данной транзакции. Выполняется противоположная по смыслу операция: вместо операции INSERT выполняется соответствующая операция DELETE, вместо операции DELETE выполняется INSERT, и вместо прямой операции UPDATE обратная операция UPDATE, восстанавливающая предыдущее состояние объекта базы данных. Любая из этих обратных операций также журнализируются. Это необходимо делать, потому что во время выполнения индивидуального отката может произойти мягкий сбой, при восстановлении после которого потребуется откатить такую транзакцию, для которой не полностью выполнен индивидуальный откат. При успешном завершении отката в журнал заносится запись о конце транзакции.

Использование имен корреляции (алиасов, псевдонимов)



Использование имен корреляции (алиасов, псевдонимов)

Иногда приходится выполнять запросы, в которых таблица соединяется сама с собой, или одна таблица соединяется дважды с другой таблицей. При этом используются имена корреляции (алиасы, псевдонимы), которые позволяют различать соединяемые копии таблиц. Имена корреляции вводятся в разделе FROM и идут через пробел после имени таблицы. Имена корреляции должны использоваться в качестве префикса перед именем столбца и отделяются от имени столбца точкой. Если в запросе указываются одни и те же поля из разных экземпляров одной таблицы, они должны быть переименованы для устранения неоднозначности в именованиях колонок результатирующей таблицы.

Использование подзапросов



Использование подзапросов

Очень удобным средством, позволяющим формулировать запросы более понятным образом, является возможность использования подзапросов, вложенных в основной запрос.



Как на самом деле выполняется оператор select



Как на самом деле выполняется оператор SELECT

Если внимательно рассмотреть приведенный выше концептуальный алгоритм вычисления результата оператора SELECT, то сразу понятно, что выполнять его непосредственно в таком виде чрезвычайно накладно. Даже на самом первом шаге, когда вычисляется декартово произведение таблиц, приведенных в разделе FROM, может получиться таблица огромных размеров, причем практически большинство строк и колонок из нее будет отброшено на следующих шагах.

На самом деле в РСУБД имеется оптимизатор, функцией которого является нахождение такого оптимального алгоритма выполнения запроса, который гарантирует получение правильного результата.

Схематично работу оптимизатора можно представить в виде последовательности нескольких шагов:

Классификация ограничений целостности



Классификация ограничений целостности

Ограничения целостности можно классифицировать несколькими способами: По способам реализации. По времени проверки. По области действия.

Определение 6

. Немедленно проверяемые ограничения проверяются непосредственно в момент выполнения операции, могущей нарушить ограничение. Например, проверка уникальности потенциального ключа проверяется в момент вставки записи в таблицу. Если ограничение нарушается, то такая операция отвергается. Транзакция, внутри которой произошло нарушение немедленно проверяемого утверждения целостности, обычно откатывается.



Ограничения домена





Классификация ограничений целостности по способам реализации



Классификация ограничений целостности по способам реализации

Каждая система обладает своими средствами поддержки ограничений целостности. Различают два способа реализации: Декларативная поддержка ограничений целостности. Процедурная поддержка ограничений целостности.

Концептуальные и физические er-модели



Концептуальные и физические ER-модели

Разработанный выше пример ER-диаграммы является примером концептуальной диаграммы. Это означает, что диаграмма не учитывает особенности конкретной СУБД. По данной концептуальной диаграмме можно построить физическую диаграмму, которая уже будут учитываться такие особенности СУБД, как допустимые типы и наименования полей и таблиц, ограничения целостности и т.п. Физический вариант диаграммы, приведенной на Рис. 9 может выглядеть, например, следующим образом:

Рис. 10

На данной диаграмме каждая сущность представляет собой таблицу базы данных, каждый атрибут становится колонкой соответствующей таблицы. Обращаем внимание на то, что во многих таблицах, например, "CUST_DETAIL" и "PROD_IN_SKLAD", соответствующих сущностям "Запись списка накладной" и "Товар на складе", появились новые атрибуты, которых не было в концептуальной модели - это ключевые атрибуты родительских таблиц, мигрировавших в дочерние таблицы для того, чтобы обеспечить связь между таблицами посредством внешних ключей.

Легко заметить, что полученные таблицы сразу находятся в 3НФ.

Конфликты между транзакциями



Конфликты между транзакциями

Итак, анализ проблем параллелизма показывает, что если не предпринимать специальных мер, то при работе в смеси нарушается свойство (И) транзакций - изолированность. Транзакции реально мешают друг другу получать правильные результаты.

Однако не всякие транзакции мешают друг другу. Очевидно, что транзакции не мешают друг другу, если они обращаются к разным данным или выполняются в разное время.

Критерии оценки качества логической модели данных



Критерии оценки качества логической модели данных

Цель данной главы - описать некоторые принципы построения хороших логических моделей данных. Хороших в том смысле, что решения, принятые в процессе логического проектирования приводили бы к хорошим физическим моделям и в конечном итоге к хорошей работе базы данных.

Для того чтобы оценить качество принимаемых решений на уровне логической модели данных, необходимо сформулировать некоторые критерии качества в терминах физической модели и конкретной реализации и посмотреть, как различные решения, принятые в процессе логического моделирования, влияют на качество физической модели и на скорость работы базы данных.

Конечно, таких критериев может быть очень много и выбор их в достаточной степени произволен. Мы рассмотрим некоторые из таких критериев, которые являются безусловно важными с точки зрения получения качественной базы данных: Адекватность базы данных предметной области Легкость разработки и сопровождения базы данных Скорость выполнения операций обновления данных (вставка, обновление, удаление кортежей) Скорость выполнения операций выборки данных

Кросс-таблицы



Кросс-таблицы

Одной из задач, связанных с представлением табличных данных является построение так называемых кросс-таблиц.

Пусть имеется отношение с тремя атрибутами и потенциальным ключом, включающим первые два атрибута.

Легкость разработки и сопровождения базы данных



Легкость разработки и сопровождения базы данных

Практически любая база данных, за исключением совершенно элементарных, содержит некоторое количество программного кода в виде триггеров и хранимых процедур.

Хранимые процедуры - это процедуры и функции, хранящиеся непосредственно в базе данных в откомпилированном виде и которые могут запускаться пользователями или приложениями, работающими с базой данных. Хранимые процедуры обычно пишутся либо на специальном процедурном расширении языка SQL (например, PL/SQL для ORACLE или Transact-SQL для MS SQL Server), или на некотором универсальном языке программирования, например, C++, с включением в код операторов SQL в соответствии со специальными правилами такого включения. Основное назначение хранимых процедур - реализация бизнес-процессов предметной области.

Триггеры - это хранимые процедуры, связанные с некоторыми событиями, происходящими во время работы базы данных. В качестве таких событий выступают операции вставки, обновления и удаления строк таблиц. Если в базе данных определен некоторый триггер, то он запускается автоматически всегда при возникновении события, с которым этот триггер связан. Очень важным является то, что пользователь не может обойти триггер. Триггер срабатывает независимо от того, кто из пользователей и каким способом инициировал событие, вызвавшее запуск триггера. Таким образом, основное назначение триггеров - автоматическая поддержка целостности базы данных. Триггеры могут быть как достаточно простыми, например, поддерживающими ссылочную целостность, так и довольно сложными, реализующими какие-либо сложные ограничения предметной области или сложные действия, которые должны произойти при наступлении некоторых событий. Например, с операцией вставки нового товара в накладную может быть связан триггер, который выполняет следующие действия - проверяет, есть ли необходимое количество товара, при наличии товара добавляет его в накладную и уменьшает данные о наличии товара на складе, при отсутствии товара формирует заказ на поставку недостающего товара и тут же посылает заказ по электронной почте поставщику.

Очевидно, что чем больше программного кода в виде триггеров и хранимых процедур содержит база данных, тем сложнее ее разработка и дальнейшее сопровождение.

Механизм выделения версий данных



Механизм выделения версий данных

Использование блокировок гарантирует сериальность планов выполнения смеси транзакций за счет общего замедления работы - конфликтующие транзакции ожидают, когда транзакция, первой заблокировавшая некоторый объект, не освободит его. Без блокировок не обойтись, если все транзакции изменяют данные. Но если в смеси транзакций присутствуют как транзакции, изменяющие данные, так и только читающие данные, можно применить альтернативный механизм обеспечения сериальности, свободный от недостатков метода блокировок. Этот метод состоит в том, что транзакциям, читающим данные, предоставляется как бы "своя" версия данных, имевшаяся в момент начала читающей транзакции. При этом транзакция не накладывает блокировок на читаемые данные, и, поэтому, не блокирует другие транзакции, изменяющие данные. Такой механизм называется механизм выделения версий и заключается в использовании журнала транзакций для генерации разных версий данных.

Журнал транзакций предназначен для выполнения операции отката при неуспешном выполнении транзакции или для восстановления данных после сбоя системы. Журнал транзакций содержит старые копии данных, измененных транзакциями.

Кратко суть метода состоит в следующем: Для каждой транзакции (или запроса) запоминается текущий системный номер (SCN - System Current Number). Чем позже начата транзакция, тем больше ее SCN. При записи страниц данных на диск фиксируется SCN транзакции, производящей эту запись. Этот SCN становится текущим системным номером страницы данных. Транзакции, только читающие данные не блокируют ничего в базе данных. Если транзакция A читает страницу данных, то SCN транзакции A сравнивается с SCN читаемой страницы данных. Если SCN страницы данных меньше или равен SCN транзакции A, то транзакция A читает эту страницу. Если SCN страницы данных больше SCN транзакции A, то это означает, что некоторая транзакция B, начавшаяся позже транзакции A, успела изменить или сейчас изменяет данные страницы. В этом случае транзакция A просматривает журнал транзакция назад в поиске первой записи об изменении нужной страницы данных с SCN меньшим, чем SCN транзакции A. Найдя такую запись, транзакция A использует старый вариант данных страницы.

Рассмотрим, как решается проблема несовместного анализа с использованием механизма выделения версий.

Длинная транзакция выполняет некоторый анализ по всей таблице, например, подсчитывает общую сумму денег на счетах клиентов банка для главного бухгалтера. Пусть на всех счетах находятся одинаковые суммы, например, по $100. Короткая транзакция в этот момент выполняет перевод $50 с одного счета на другой так, что общая сумма по всем счетам не меняется.

Метод временных меток



Метод временных меток

Альтернативный метод сериализации транзакций, хорошо работающий в условиях редких конфликтов транзакций и не требующий построения графа ожидания транзакций основан на использовании временных меток.

Основная идея метода состоит в следующем: если транзакция A началась раньше транзакции B, то система обеспечивает такой режим выполнения, как если бы A была целиком выполнена до начала B.

Для этого каждой транзакции T предписывается временная метка t, соответствующая времени начала T. При выполнении операции над объектом r базы данных транзакция T помечает его своей временной меткой и типом операции (чтение или изменение).

Перед выполнением операции над объектом r транзакция B выполняет следующие действия: Проверяет, не закончилась ли транзакция A, пометившая этот объект. Если A закончилась, B помечает объект r своей временной меткой и выполняет операцию. Если транзакция A не завершилась, то B проверяет конфликтность операций. Если операции неконфликтны, при объекте r остается или проставляется временная метка с меньшим значением (более ранняя), и транзакция B выполняет свою операцию. Если операции B и A конфликтуют, то если t(A) > t(B) (т.е. транзакция A является более "молодой", чем B), то транзакция A откатывается и, получив новую временную метку, начинается заново. Транзакция B продолжает работу. Если же t(A) < t(B) (A "старше" B), то транзакция B откатывается и, получив новую временную метку, начинается заново. Транзакция A продолжает работу.

В итоге система обеспечивает такую работу, при которой при возникновении конфликтов всегда откатывается более молодая транзакция (начавшаяся позже).

Очевидным недостатком метода временных меток является то, что может откатиться более дорогая транзакция, начавшаяся позже более дешевой.

К другим недостаткам метода временных меток относятся потенциально более частые откаты транзакций, чем в случае использования блокировок. Это связано с тем, что конфликтность транзакций определяется более грубо.

Множества



Множества

Наиболее простая структура данных, используемая в математике, имеет место в случае, когда между отдельными изолированными данными отсутствуют какие-либо взаимосвязи. Совокупность таких данных представляет собой множество. Понятие множества является неопределяемым понятием. Множество не обладает внутренней структурой. Множество можно представить себе как совокупность элементов, обладающих некоторым общим свойством. Для того чтобы некоторую совокупность элементов можно было назвать множеством, необходимо, чтобы выполнялись следующие условия: Должно существовать правило, позволяющее определить, принадлежит ли указанный элемент данной совокупности. Должно существовать правило, позволяющее отличать элементы друг от друга. (Это, в частности, означает, что множество не может содержать двух одинаковых элементов).

Множества обычно обозначаются заглавными латинскими буквами. Если элемент Множества, то это обозначается:

Если каждый элемент множества Множества, то говорят, что множество подмножеством множества

Подмножество Множества называется собственным подмножеством, если

Используя понятие множества можно построить более сложные и содержательные объекты.

N-арные отношения (отношения степени n)



n-арные отношения (отношения степени n)

В математике n-арные отношения рассматриваются относительно редко, в отличие от баз данных, где наиболее важными являются именно отношения, заданные на декартовом произведении более чем двух множеств.



Неповторяемое считывание



Неповторяемое считывание

Транзакция A дважды читает одну и ту же строку. Между этими чтениями вклинивается транзакция B, которая изменяет значения в строке.



Неповторяемое считывание

Транзакция A дважды читает одну и ту же строку. Между этими чтениями вклинивается транзакция B, которая изменяет значения в строке.



Невыразимость транзитивного замыкания реляционными операторами



Невыразимость транзитивного замыкания реляционными операторами

Следующий пример иллюстрирует класс запросов, невыразимых средствами реляционной алгебры или реляционного исчисления по причине невыразимости средствами реляционной алгебры транзитивного замыкания отношений (см. гл. 1).



Нфбк (нормальная форма бойса-кодда)



НФБК (Нормальная Форма Бойса-Кодда)

При приведении отношений при помощи алгоритма нормализации к отношениям в 3НФ неявно предполагалось, что все отношения содержат один потенциальный ключ. Это не всегда верно. Рассмотрим следующий пример отношения, содержащего два ключа.



Null-значения



Null-значения

Основное назначение баз данных состоит в том, чтобы хранить и предоставлять информацию о реальном мире. Для представления этой информации в базе данных используются привычные для программистов типы данных - строковые, численные, логические и т.п. Однако в реальном мире часто встречается ситуация, когда данные неизвестны или не полны. Например, место жительства или дата рождения человека могут быть неизвестны (база данных разыскиваемых преступников). Если вместо неизвестного адреса уместно было бы вводить пустую строку, то что вводить вместо неизвестной даты? Ответ - пустую дату - не вполне удовлетворителен, т.к. простейший запрос "выдать список людей в порядке возрастания дат рождения" даст заведомо неправильных ответ.

Для того чтобы обойти проблему неполных или неизвестных данных, в базах данных могут использоваться типы данных, пополненные так называемым null-значением. Null-значение - это, собственно, не значение, а некий маркер, показывающий, что значение неизвестно.

Таким образом, в ситуации, когда возможно появление неизвестных или неполных данных, разработчик имеет на выбор два варианта.

Первый вариант состоит в том, чтобы ограничиться использованием обычных типов данных и не использовать null-значения, а вместо неизвестных данных вводить либо нулевые значения, либо значения специального вида - например, договориться, что строка "АДРЕС НЕИЗВЕСТЕН" и есть те данные, которые нужно вводить вместо неизвестного адреса. В любом случае на пользователя (или на разработчика) ложится ответственность на правильную трактовку таких данных. В частности, может потребоваться написание специального программного кода, который в нужных случаях "вылавливал" бы такие данные. Проблемы, возникающие при этом очевидны - не все данные становятся равноправны, требуется дополнительный программный код, "отслеживающий" эту неравноправность, в результате чего усложняется разработка и сопровождение приложений.

Второй вариант состоит в использовании null-значений вместо неизвестных данных. За кажущейся естественностью такого подхода скрываются менее очевидные и более глубокие проблемы. Наиболее бросающейся в глаза проблемой является необходимость использования трехзначной логики при оперировании с данными, которые могут содержать null-значения. В этом случае при неаккуратном формулировании запросов, даже самые естественные запросы могут давать неправильные ответы. Есть более фундаментальные проблемы, связанные с теоретическим обоснованием корректности введения null-значений, например, непонятно вообще, входят ли null-значения в домены или нет.

Подробное обсуждение проблем использования null-значений выходит за пределы данной работы. Можно только сказать о том, что этот вопрос в теории реляционных баз данных окончательно не решен. Основоположник реляционного подхода Кодд считал null-значения неотъемлемой частью реляционной модели. К.Дейт, один из крупнейших теоретиков реляционной модели выступает категорически против null-значений (подробное обсуждение проблем, возникающих при использовании null-значений приведено в книге [11].

Практически все реализации современных реляционных СУБД позволяют использовать null-значения, несмотря на их недостаточную теоретическую обоснованность. Такую ситуацию можно сравнить с ситуацией, сложившейся в начале века с теорией множеств. Почти сразу после создания Кантором теории множеств, в ней были обнаружены внутренние противоречия (антиномии). Были разработаны более строгие теории, позволяющие избежать этих противоречий (конструктивная теория множеств). Однако в реальной работе большинство математиков пользуется классической теорией множеств, т.к. более строгие теории более ограничены и негибки в применении именно в силу своей большей строгости.

Мнение автора (очень скромное по сравнению с мнением корифеев реляционной теории) состоит в том, что желательно избегать null-значений. Тем не менее, приведем здесь описание трехзначной логики, необходимой для работы с null-значениями.

Общая характеристика реляционной модели данных



Общая характеристика реляционной модели данных

Основы реляционной модели данных были впервые изложены в статье Е.Кодда [43] в 1970 г. Эта работа послужила стимулом для большого количества статей и книг, в которых реляционная модель получила дальнейшее развитие. Наиболее распространенная трактовка реляционной модели данных принадлежит К.Дейту [11]. Согласно Дейту, реляционная модель состоит из трех частей: Структурной части. Целостной части. Манипуляционной части.

Структурная часть описывает, какие объекты рассматриваются реляционной моделью. Постулируется, что единственной структурой данных, используемой в реляционной модели, являются нормализованные n-арные отношения.

Целостная часть описывает ограничения специального вида, которые должны выполняться для любых отношений в любых реляционных базах данных. Это целостность сущностей и целостность внешних ключей.

Манипуляционная часть описывает два эквивалентных способа манипулирования реляционными данными - реляционную алгебру и реляционное исчисление.

В данной главе рассматривается структурная часть реляционной модели.

Общие принципы реализации ограничений средствами sql



Общие принципы реализации ограничений средствами SQL

Стандарт SQL не предусматривает процедурных ограничений целостности, реализуемых при помощи триггеров и хранимых процедур. В стандарте SQL 92 отсутствует понятие "триггер", хотя триггеры имеются во всех промышленных СУБД SQL-типа. Таким образом, реализация ограничений средствами конкретной СУБД обладает большей гибкостью, нежели с использованием исключительно стандартных средств SQL.

Стандарт SQL позволяет задавать декларативные ограничения следующими способами: Как ограничения домена. Как ограничения, входящие в определение таблицы. Как ограничения, хранящиеся в базе данных в виде независимых утверждений (assertion).

Допускаются как немедленно проверяемые, так и ограничения с отложенной проверкой. Режим проверки отложенных ограничений можно в любой момент изменить так, чтобы ограничение проверялось: После исполнения каждого оператора, изменяющего содержимое таблицы, к которой относится данное ограничение. При завершении каждой транзакции, включающей операторы, изменяющие содержимое таблиц, к которым относятся данное ограничение. В любой промежуточный момент, если пользователь инициирует проверку.

При определении ограничения указывается тип проверки ограничения - является ли это ограничение неоткладываемым (NOT DEFERRED) или может быть откладываемым (DEFERRED). Во втором случае можно задать процедуру по умолчанию: проверять немедленно или проверять по завершении транзакции. Таким образом, можно определить потенциально откладываемое ограничение, которое по умолчанию проверяется немедленно. В любой момент режим проверки такого ограничения можно изменить на отложенный и наоборот. Режим проверки может быть изменен для одного ограничения или сразу для всех потенциально откладываемых ограничений. Если ограничение определено как неоткладываемое, то тип такого ограничения изменить нельзя и ограничение всегда проверяется немедленно.

Элементы процедурности все же присутствуют в стандарте SQL в виде так называемых действий, исполняемых по ссылке (referential triggered actions). Эти действия определяют, что будет происходить при изменении значения родительского ключа, на который ссылается некоторый внешний ключ. Эти действия можно задавать независимо для операций обновления (ON UPDATE) или для операций удаления (ON DELETE) записей в родительском отношении. Стандартом SQL определяется 4 типа действий, исполняемых по ссылке: CASCADE. Изменения значения родительского ключа автоматически приводят к таким же изменениям связанного с ним значения внешнего ключа. Удаление кортежа в родительском отношении приводит к удалению связанных с ним кортежей в дочернем отношении. SET NULL. Все внешние ключи, которые ссылаются на обновленный или удаленный родительский ключ получают значения NULL. SET DEFAULT. Все внешние ключи, которые ссылаются на обновленный или удаленный родительский ключ получают значения, принятые по умолчанию для этих ключей. NO ACTION. Значения внешнего ключа не изменяются. Если операция приводит к нарушению ссылочной целостности (появляются "висящие" ссылки), то такая операция не выполняется.

Как видно, действия, исполняемые по ссылке, фактически являются встроенными в СУБД триггерами. Действия типа CASCADE, SET NULL и SET DEFAULT являются компенсирующими операциями, вызывающимися при попытке нарушить ссылочную целостность.

Обзор реляционной алгебры



Обзор реляционной алгебры

Третья часть реляционной модели, манипуляционная часть, утверждает, что доступ к реляционным данным осуществляется при помощи реляционной алгебры или эквивалентного ему реляционного исчисления.

В реализациях конкретных реляционных СУБД сейчас не используется в чистом виде ни реляционная алгебра, ни реляционное исчисление. Фактическим стандартом доступа к реляционным данным стал язык SQL (Structured Query Language). Язык SQL представляет собой смесь операторов реляционной алгебры и выражений реляционного исчисления, использующий синтаксис, близкий к фразам английского языка и расширенный дополнительными возможностями, отсутствующими в реляционной алгебре и реляционном исчислении. Вообще, язык доступа к данным называется реляционно полным, если он по выразительной силе не уступает реляционной алгебре (или, что то же самое, реляционному исчислению), т.е. любой оператор реляционной алгебры может быть выражен средствами этого языка. Именно таким и является язык SQL.

В данной главе будут рассмотрены основы реляционной алгебры.